Animated Fine Art

Animated Fine Art
Animated Fine Art
Animated Fine Art

Animated Fine Art

Collection by E Lynx of famous artworks that have been animated and rendered in 3D which you can interact with their respective @sketchfab upload:

More Here

More Posts from Ocrim1967 and Others

6 years ago
Astronomers Have Just Assembled One Of The Most Comprehensive Portraits Yet Of The Universe’s Evolutionary

Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes. In particular, Hubble’s ultraviolet vision opens a new window on the evolving universe, tracking the birth of stars over the last 11 billion years back to the cosmos’ busiest star-forming period, about 3 billion years after the big bang. This photo encompasses a sea of approximately 15,000 galaxies — 12,000 of which are star-forming — widely distributed in time and space. This mosaic is 14 times the area of the Hubble Ultra Violet Ultra Deep Field released in 2014.

Credits: NASA, ESA, P. Oesch (University of Geneva), and M. Montes (University of New South Wales)

6 years ago
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter

Swirls of Jupiter

Jupiter is a very stormy, turbulent, violent planet. The planet completes a day (or one complete rotation) within roughly 10 hours, which creates massive winds, producing these swirls, and violent storms. The fast rotation coupled with the fact that the planet is nothing but gas greatly multiplies the Coriolis effect. Earth too has a Coriolis effect, this creates the characteristic hurricane shapes and also contributes to the fact that storms will spin the opposite direction in different hemispheres. Luckily, our rotation is slower - our storms are less frequent and less violent than they would be if our days were shorter.

The above images come from the recent Juno mission by NASA.

6 years ago
Psalm 19-1-4
Psalm 19-1-4
Psalm 19-1-4
Psalm 19-1-4
Psalm 19-1-4
Psalm 19-1-4
Psalm 19-1-4

Psalm 19-1-4

5 years ago

5 New Competitions for the Artemis Generation!

A common question we get is, “How can I work with NASA?”

The good news is—just in time for the back-to-school season—we have a slew of newly announced opportunities for citizen scientists and researchers in the academic community to take a shot at winning our prize competitions.

As we plan to land humans on the Moon by 2024 with our upcoming Artemis missions, we are urging students and universities to get involved and offer solutions to the challenges facing our path to the Moon and Mars. Here are five NASA competitions and contests waiting for your ideas on everything from innovative ways to drill for water on other planets to naming our next rover:

1. The BIG Idea Challenge: Studying Dark Regions on the Moon

Before astronauts step on the Moon again, we will study its surface to prepare for landing, living and exploring there. Although it is Earth’s closest neighbor, there is still much to learn about the Moon, particularly in the permanently shadowed regions in and near the polar regions.

image

Through the annual Breakthrough, Innovative and Game-changing (BIG) Idea Challenge, we’re asking undergraduate and graduate student teams to submit proposals for sample lunar payloads that can demonstrate technology systems needed to explore areas of the Moon that never see the light of day. Teams of up to 20 students and their faculty advisors are invited to propose unique solutions in response to one of the following areas:

• Exploration of permanently shadowed regions in lunar polar regions • Technologies to support in-situ resource utilization in these regions • Capabilities to explore and operate in permanently shadowed regions

Interested teams are encouraged to submit a Notice of Intent by September 27 in order to ensure an adequate number of reviewers and to be invited to participate in a Q&A session with the judges prior to the proposal deadline. Proposal and video submission are due by January 16, 2020.

2. RASC-AL 2020: New Concepts for the Moon and Mars

Although boots on the lunar surface by 2024 is step one in expanding our presence beyond low-Earth orbit, we’re also readying our science, technology and human exploration missions for a future on Mars.

The 2020 Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) Competition is calling on undergraduate and graduate teams to develop new concepts that leverage innovations for both our Artemis program and future human missions to the Red Planet. This year’s competition branches beyond science and engineering with a theme dedicated to economic analysis of commercial opportunities in deep space.

image

Competition themes range from expanding on how we use current and future assets in cislunar space to designing systems and architectures for exploring the Moon and Mars. We’re seeking proposals that demonstrate originality and creativity in the areas of engineering and analysis and must address one of the five following themes: a south pole multi-purpose rover, the International Space Station as a Mars mission analog, short surface stay Mars mission, commercial cislunar space development and autonomous utilization and maintenance on the Gateway or Mars-class transportation.

The RASC-AL challenge is open to undergraduate and graduate students majoring in science, technology, engineering, or mathematics at an accredited U.S.-based university. Submissions are due by March 5, 2020 and must include a two-minute video and a detailed seven to nine-page proposal that presents novel and robust applications that address one of the themes and support expanding humanity’s ability to thrive beyond Earth.

3. The Space Robotics Challenge for Autonomous Rovers

Autonomous robots will help future astronauts during long-duration missions to other worlds by performing tedious, repetitive and even strenuous tasks. These robotic helpers will let crews focus on the more meticulous areas of exploring. To help achieve this, our Centennial Challenges initiative, along with Space Center Houston of Texas, opened the second phase of the Space Robotics Challenge. This virtual challenge aims to advance autonomous robotic operations for missions on the surface of distant planets or moons.

image

This new phase invites competitors 18 and older from the public, industry and academia to develop code for a team of virtual robots that will support a simulated in-situ resource utilization mission—meaning gathering and using materials found locally—on the Moon.

The deadline to submit registration forms is December 20.

4. Moon to Mars Ice & Prospecting Challenge to Design Hardware, Practice Drilling for Water on the Moon and Mars

A key ingredient for our human explorers staying anywhere other than Earth is water. One of the most crucial near-term plans for deep space exploration includes finding and using water to support a sustained presence on our nearest neighbor and on Mars.

To access and extract that water, NASA needs new technologies to mine through various layers of lunar and Martian dirt and into ice deposits we believe are buried beneath the surface. A special edition of the RASC-AL competition, the Moon to Mars Ice and Prospecting Challenge, seeks to advance critical capabilities needed on the surface of the Moon and Mars. The competition, now in its fourth iteration, asks eligible undergraduate and graduate student teams to design and build hardware that can identify, map and drill through a variety of subsurface layers, then extract water from an ice block in a simulated off-world test bed.

Interested teams are asked to submit a project plan detailing their proposed concept’s design and operations by November 14. Up to 10 teams will be selected and receive a development stipend. Over the course of six months teams will build and test their systems in preparation for a head-to-head competition at our Langley Research Center in June 2020.

5. Name the Mars 2020 Rover!

Red rover, red rover, send a name for Mars 2020 right over! We’re recruiting help from K-12 students nationwide to find a name for our next Mars rover mission.

The Mars 2020 rover is a 2,300-pound robotic scientist that will search for signs of past microbial life, characterize the planet’s climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet.

K-12 students in U.S. public, private and home schools can enter the Mars 2020 Name the Rover essay contest. One grand prize winner will name the rover and be invited to see the spacecraft launch in July 2020 from Cape Canaveral Air Force Station in Florida. To enter the contest, students must submit by November 1 their proposed rover name and a short essay, no more than 150 words, explaining why their proposed name should be chosen.

Just as the Apollo program inspired innovation in the 1960s and ‘70s, our push to the Moon and Mars is inspiring students—the Artemis generation—to solve the challenges for the next era of space exploration.

For more information on all of our open prizes and challenges, visit: https://www.nasa.gov/solve/explore_opportunities

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago

How NASA Earth Data Aids America

image

Today we roll out a new communications project that highlights some of the many ways that NASA’s Earth observations help people strengthen communities across the United States.

Space for U.S. features stories on how Earth science data is used to make informed decisions about public health, disaster response and recovery and environmental protection. By highlighting advanced technology from a global perspective, our data helps provide people achieve groundbreaking insights.

image

For example, a family-owned coffee company in Maine used our sunlight, wind and temperature data to determine the placement of their power-generating solar wall.

Space for U.S. features 56 stories illustrating how our science has made an impact in every state in the nation as well as the District of Columbia, Puerto Rico and regions along the Atlantic, Pacific, Gulf of Mexico, and the Great Lakes.

image

For six decades, we’ve used the vantage point of space to better understand our home planet and improve lives. Using Space for U.S., you can browse through stories about how applied Earth science either by state or by topics such as animals, disasters, energy, health, land and water. Each click brings you a story about how people are putting NASA data to work.

image

Explore the true stories behind the innovative technology, groundbreaking insights, and extraordinary collaboration happening right here in the United States with Space for U.S.

Check out “Space for U.S.” today! www.nasa.gov/spaceforus

image

For more information on NASA Earth, head to www.nasa.gov/Earth or https://appliedsciences.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 years ago
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test
General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test

General Relativity Rules: Einstein Victorious In Unprecedented Gravitational Redshift Test

“The most interesting part of this result is that it clearly demonstrates the purely General Relativistic effect of gravitational redshift. The observations of S0-2 showcase an exact agreement with Einstein’s predictions, within the measurement uncertainties. When Einstein first conceived of General Relativity, he did so conceptually: with the idea that acceleration and gravitation were indistinguishable to an observer.

With the validation of Einstein’s predictions for the orbit of this star around the galactic center’s black hole, scientists have affirmed the equivalence principle, thereby ruling out or constraining alternative theories of gravity that violate this cornerstone of Einsteinian gravity. Gravitational redshifts have never been measured in environments where gravity is this strong, marking another first and another victory for Einstein. Even in the strongest environment ever probed, the predictions of General Relativity have yet to lead us astray.”

If you want to test Einstein’s General Relativity, you’ll want to look for an effect that it predicts that’s unique, and you’ll want to look for it in the strongest-field regime possible. Well, there’s a black hole at the center of our galaxy with 4 million times the mass of the Sun, and there’s a star (S0-2) that passes closer to it, during closest approach, than any other. In May of 2018, it made this closest approach, coming within 18 billion km (about twice the diameter of Neptune’s orbit) of the black hole, and zipping around at 2.7% the speed of light.

Did Einstein’s predictions for gravitational redshift come out right? You bet they did: 5-sigma, baby! Come get the full, amazing story here!

5 years ago
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?
Ask Ethan: Why Are There Only Three Generations Of Particles?

Ask Ethan: Why Are There Only Three Generations Of Particles?

“It is eminently possible that there are more particles out there than the Standard Model, as we know it, presently predicts. In fact, given all the components of the Universe that aren’t accounted for in the Standard Model, from dark matter to dark energy to inflation to the origin of the matter-antimatter asymmetry, it’s practically unreasonable to conclude that there aren’t additional particles.

But if the additional particles fit into the structure of the Standard Model as an additional generation, there are tremendous constraints. They could not have been created in great abundance during the early Universe. None of them can be less massive than 45.6 GeV/c^2. And they could not imprint an observable signature on the cosmic microwave background or in the abundance of the light elements.

Experimental results are the way we learn about the Universe, but the way those results fit into our most successful theoretical frameworks is how we conclude what else does and doesn’t exist in our Universe. Unless a future accelerator result surprises us tremendously, three generations is all we get: no more, no less, and nobody knows why.”

There are three generations of (fermionic) particles in the Universe. In addition to the lightest quarks (up and down), the electron and positron, and the electron neutrino and anti-neutrino, there are two extra, heavy “copies” of this structure. The charm-and-strange quarks plus the top-and-bottom quarks fill the remaining generations of quarks, while the muon and muon neutrino and anti-neutrino plus the tau and tau neutrino and anti-neutrino comprise the next generation of leptons.

Theoretically, there’s nothing demanding three and only three generations, but experiments have shown that there are no more to within absurd constraints. Here’s the full story of how we know there are only three generations.

6 years ago
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 
Working Too Hard, Feeling Overwhelmed By Family Responsibilities, Or Dealing With An Ongoing Challenge? 

Working too hard, feeling overwhelmed by family responsibilities, or dealing with an ongoing challenge? 

Maybe it’s time to turn your attention back to yourself and to your own self-care. Although we often brush it aside, self-care is not optional if you want to be happy and healthy.

4 years ago
Loving Vincent (2017) Dir. Dorota Kobiela, Hugh Welchman
Loving Vincent (2017) Dir. Dorota Kobiela, Hugh Welchman
Loving Vincent (2017) Dir. Dorota Kobiela, Hugh Welchman
Loving Vincent (2017) Dir. Dorota Kobiela, Hugh Welchman
Loving Vincent (2017) Dir. Dorota Kobiela, Hugh Welchman

Loving Vincent (2017) dir. Dorota Kobiela, Hugh Welchman

6 years ago

What’s Up For September 2018?

Outstanding views Venus, Jupiter, Saturn and Mars with the naked eye!

image

You’ll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you’ll see Venus’s phase change dramatically during September - from nearly half phase to a larger thinner crescent!

image

Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.

image

Use the summer constellations help you trace the Milky Way.

image

Sagittarius: where stars and some brighter clumps appear as steam from the teapot.

image

Aquila: where the Eagle’s bright Star Altair, combined with Cygnus’s Deneb, and Lyra’s Vega mark the Summer Triangle. 

image

Cassiopeia, the familiar “w”- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae. 

image

Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars! 

image

Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.

What’s Up For September 2018?

Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth’s eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.

What’s Up For September 2018?

And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch “What’s Up” from March 2018.

What’s Up For September 2018?

Watch the full What’s Up for September Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

  • demeter1111
    demeter1111 liked this · 2 years ago
  • beans2960
    beans2960 liked this · 2 years ago
  • luniceity
    luniceity liked this · 4 years ago
  • purplethingobservation
    purplethingobservation liked this · 4 years ago
  • dch
    dch liked this · 4 years ago
  • tilkicioglu
    tilkicioglu liked this · 5 years ago
  • rosewoodguitar301212
    rosewoodguitar301212 liked this · 5 years ago
  • matetikus
    matetikus liked this · 5 years ago
  • hatfejusarkany
    hatfejusarkany reblogged this · 5 years ago
  • meaningful-silent
    meaningful-silent reblogged this · 5 years ago
  • garden-t
    garden-t liked this · 5 years ago
  • overtheobvious
    overtheobvious liked this · 6 years ago
  • tm63176
    tm63176 reblogged this · 6 years ago
  • thedaywedied
    thedaywedied reblogged this · 6 years ago
  • eegana
    eegana reblogged this · 6 years ago
  • ddomiotsuke
    ddomiotsuke liked this · 6 years ago
  • wakomi
    wakomi liked this · 6 years ago
  • ms-bird
    ms-bird reblogged this · 6 years ago
  • endia1012
    endia1012 liked this · 6 years ago
  • be-ki-a
    be-ki-a reblogged this · 6 years ago
  • cpsl0624
    cpsl0624 liked this · 6 years ago
  • hatomameko
    hatomameko liked this · 6 years ago
  • ricky5550
    ricky5550 liked this · 6 years ago
  • heavymetallhippie
    heavymetallhippie reblogged this · 6 years ago
  • opticcultureblog
    opticcultureblog reblogged this · 6 years ago
  • myloveissubliminal
    myloveissubliminal liked this · 6 years ago
  • archelon
    archelon reblogged this · 6 years ago
  • meganecamera
    meganecamera liked this · 6 years ago
  • ponponpom
    ponponpom reblogged this · 6 years ago
  • jhonnyflowers1983
    jhonnyflowers1983 reblogged this · 6 years ago
  • jhonnyflowers1983
    jhonnyflowers1983 liked this · 6 years ago
  • mendo-qsus
    mendo-qsus reblogged this · 6 years ago
  • thedaywedied
    thedaywedied liked this · 6 years ago
  • imickeyd
    imickeyd liked this · 6 years ago
  • hektor3a
    hektor3a reblogged this · 6 years ago
  • shige-boy
    shige-boy reblogged this · 6 years ago
  • bulkkul
    bulkkul liked this · 6 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags