This month the new year’s first meteor shower fizzles, Mars meets Jupiter in the morning sky and the U.S. will enjoy a total lunar eclipse!
Most meteor showers radiate from recognizable constellations. Like the Leonids, Geminids and Orionids.
But the Quadrantids are meteors that appear to radiate from the location of the former Quadrans Muralis constellation, an area that’s now part of the constellation Bootes.
The Quadrantids’ peak lasts for just a few hours, and sadly, this year their timing coincides with a very bright, nearly full moon that will wash out most of the meteors.
You can look in any direction to see all the meteor showers. When you see one of these meteors, hold a shoestring along the path it followed. The shoestring will lead you back to the constellation containing the meteor’s origin.
On the morning of January 6th, look in the south-southeast sky 45 minutes before sunrise to see Jupiter and fainter Mars almost as close as last month’s Jupiter and Venus close pairing.
Mars is only one-sixth the apparent diameter of Jupiter, but the two offer a great binocular and telescopic view with a pretty color contrast. They remain in each other’s neighborhood from January 5th through the 8th.
Finally, to end the month, a great total lunar eclipse favors the western U.S., Alaska, and Hawaii and British Columbia on January 31st. Australia and the Pacific Ocean are well placed to see a major portion of the eclipse–if not all of it.
Watch the full What’s Up for January Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
#Eclipse2017
The eclipse should be visible to some extent across the continental U.S. Here’s map of its path.
Our eclipse page can help you find the best viewing locations by longitude and latitude: eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/SE2017Aug21Tgoogle.html
Want to know more about citizen science projects? Find a list of citizen science projects for the eclipse: https://eclipse.aas.org/resources/citizen-science
Get your eclipse viewing safety glasses beforehand: eclipse2017.nasa.gov/safety
In this interactive, 3D simulation of the total eclipse on August 21, 2017, you can see a view of the eclipse from anywhere on the planet:
http://eyes.jpl.nasa.gov/eyes-on-eclipse.html
Join the conversation on social media. Tag your posts: #Eclipse2017.
Twitter: @NASASolarSystem, @NASA, @NASASunEarth Facebook: NASA Solar System
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A primeira celebração dominical de 2025 foi com eles! A nossa segunda família, a família Vicentina! 🥰💙
🌟 🎶 Esse amor não tem fim
Já faz parte de mim
Te amo CAPRICHOSO
E vai ser pra sempre assim
Nasci pra amar você
De azul até morrer
Não há um amor maior
Do amor que eu sinto por você! 🎶 💙
The Kepler space telescope is our first mission capable of identifying Earth-size planets around other stars. On Monday, June 19, 2017, scientists from many countries gathered at our Ames Research Center to talk about the latest results from the spacecraft, which include the identification of more than 200 potential new worlds! Here’s what you need to know:
We found 219 new planet candidates.
All of these worlds were found in a patch of sky near the Cygnus constellation in our Milky Way galaxy. Between 2009 and 2013, Kepler searched more than 200,000 stars in the region for orbiting planets. The 219 new planet candidates are part of the more than 4,000 planet candidates and 2,300 confirmed planets Kepler has identified to date.
Ten of these worlds are like our own.
Out of the 219 new planet candidates, 10 are possibly rocky, terrestrial worlds and orbit their star in the habitable zone – the range of distances from a star where liquid water could pool on the surface of a rocky planet.
Small planets come in two sizes.
Kepler has opened up our eyes to the existence of many small worlds. It turns out a lot of these planets are either approximately 1.5 times the size of Earth or just smaller than Neptune. The cool names given to planets of these sizes? Super Earths and mini-Neptunes.
Some of the new planets could be habitable.
Water is a key ingredient to life as we know it. Many of the new planet candidates are likely to have small rocky cores enveloped by a thick atmosphere of hydrogen and helium, and some are thought to be ocean worlds. That doesn’t necessarily mean the oceans of these planets are full of water, but we can dream, can’t we?
Other Earths are out there.
Kepler’s survey has made it possible for us to measure the number of Earth-size habitable zone planets in our galaxy. Determining how many planets like our own that exist is the big question we’ll explore next.
The hunt for new planets continues.
Kepler continues to search for planets in different regions of space. With the launch of our Transiting Exoplanet Survey Satellite (TESS) and the James Webb Space Telescope (JWST) in 2018, we’re going to search for planets nearest the sun and measure the composition of their atmospheres. In the mid-2020s, we have our sights on taking a picture of small planets like Earth with our Wide-Field Infrared Survey Telescope (WFIRST).
*All images of planets are artist illustrations.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Plutão, o pequeno planeta anão, localizado nos confins do nosso Sistema Solar, que até pouco mais de um ano atrás não passava de um amontoado de pixels nas melhores imagens que tínhamos dele, hoje, é um dos objetos mais fascinantes e mais estudado pelo menos por aqueles que estudam ciência planetária.
Além disso, certamente é o objeto que mais surpresas tem nos revelado nesse último ano de intensas pesquisas.
Como já falei aqui para vocês, o próprio Alan Stern, resumiu numa frase toda a agitação nos estudos sobre Plutão, dizendo, simplesmente, que Plutão é o novo Marte.
Essa semana a revista Nature trouxe uma série de 4 artigos sobre Plutão, artigos que mostram estudos feitos principalmente sobre a Sputnik Planitia, sobre o possível oceano na sua subsuperfície, sobre o papel dela na orientação da órbita de Plutão entre outras coisas.
A planície possivelmente se formou com o choque de um objeto do Cinturão de Kuiper com cerca de 250 km de diâmetro a aproximadamente 4 bilhões de ano atrás.
Quando se criou essa enorme bacia, ela foi preenchida com uma água densa, combinada com o nitrogênio da superfície, formando ali um excesso de massa que fez com que Plutão sofresse uma rotação, reorientando-o com relação a Caronte.
Toda vez que se fala em oceano num mundo congelado, a primeira pergunta que vem na cabeça, ou o primeiro pensamento é, será que existe vida nesse oceano? Esse é um pensamento meio que óbvio já que a vida na Terra, como a conhecemos começou nos oceanos.
O sistema de Plutão, ou seja, o planeta anão e seus satélites é um sistema rico em amônia, a amônia já foi detectada em Caronte e nos demais satélites de Plutão, indicando que muito provavelmente existe amônia no interior de Plutão.
A amônia seria o elemento responsável para não deixar que o oceano abaixo da superfície de Plutão congele, ele é mantido numa viscosidade semelhante a de um mel.
As condições não são boas, o oceano tem amônia, é muito frio, tem água salgada, ou seja, não é um lugar para se encontrar germes, peixes, lulas gigantes, mas como pode acontecer em Titã que algum tipo de organismo poderia começar a existir nos oceanos de amônia, poderia ter um novo tipo de vida adaptável a esse ambiente.
De acordo com os pesquisadores, a vida pode suportar quase tudo, as salmoras, o frio extremo, o calor extremo, mas dificilmente suportaria a quantidade de amônia existente ali para manter o oceano no estado líquido.
Todas essas ideias sobre o oceano de Plutão são validas, mas são só inferências, sem medidas diretas, se quisermos realmente provar a existência desse oceano, teríamos que mandar uma sonda para Plutão que entraria em órbita e realizaria medidas de gravidade, provando a presença ou não do oceano.
Uma implicação importante desse trabalho é levantar a questão sobre a possibilidade de se encontrar oceanos em outros objetos do Cinturão de Kuiper, será que a fronteira do Sistema Solar é repleta de oceanos protegidos? E a vida, será que pode proliferar nesses oceanos? Por enquanto só ficamos com as especulações.
(via https://www.youtube.com/watch?v=H_LOJJm29C8)
The Juno spacecraft has been traveling toward its destination since its launch in 2011, and is set to insert Jupiter’s orbit on July 4. Jupiter is by far the largest planet in the solar system. Humans have been studying it for hundreds of years, yet still many basic questions about the gas world remain.
The primary goal of the Juno spacecraft is to reveal the story of the formation and evolution of the planet Jupiter. Understanding the origin and evolution of Jupiter can provide the knowledge needed to help us understand the origin of our solar system and planetary systems around other stars.
Have We Visited Jupiter Before? Yes! In 1995, our Galileo mission (artist illustration above) made the voyage to Jupiter. One of its jobs was to drop a probe into Jupiter’s atmosphere. The data showed us that the composition was different than scientists thought, indicating that our theories of planetary formation were wrong.
What’s Different About This Visit? The Juno spacecraft will, for the first time, see below Jupiter’s dense clover of clouds. [Bonus Fact: This is why the mission was named after the Roman goddess, who was Jupiter’s wife, and who could also see through the clouds.]
Unlocking Jupiter’s Secrets
Specifically, Juno will…
Determine how much water is in Jupiter’s atmosphere, which helps determine which planet formation theory is correct (or if new theories are needed)
Look deep into Jupiter’s atmosphere to measure composition, temperature, cloud motions and other properties
Map Jupiter’s magnetic and gravity fields, revealing the planet’s deep structure
Explore and study Jupiter’s magnetosphere near the planet’s poles, especially the auroras – Jupiter’s northern and southern lights – providing new insights about how the planet’s enormous
Juno will let us take a giant step forward in our understanding of how giant planets form and the role these titans played in putting together the rest of the solar system.
For updates on the Juno mission, follow the spacecraft on Facebook, Twitter, YouTube and Tumblr.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Localizada na constelação de Eridanus e com distância aproximadamente de 69 milhões de anos-luz, a galáxia NGC 1300 é um exemplo maravilhoso de uma galáxia espiral barrada.
Ao contrário de outras galáxias espirais, onde os braços estelares se curvam para fora do centro da galáxia, os braços de NGC 1300 se afastam das extremidades de uma barra reta de estrelas que se estende pelo núcleo da galáxia.
Os braços espirais de NGC 1300 incluem aglomerados azuis de estrelas jovens, nuvens cor-de-rosa que estão formando novas estrelas e faixas escuras de poeira. Duas faixas de poeira proeminentes também cortam a barra da galáxia, que contém principalmente estrelas alaranjadas mais velhas. Essas faixas de poeira desaparecem em uma espiral estreita no centro da barra.
Curiosamente, apenas as galáxias com barras grandes parecem ter uma "espiral dentro de uma espiral".
📷 Créditos da imagem: Hubble Space Telescope
📚 Créditos do texto: Hubble Space Telescope, disponível nos links:
[1] https://hubblesite.org/contents/media/images/3880-Image
[2] https://esahubble.org/images/opo0501a/