Where your favorite blogs come alive
Somebody is very pleased with her Samantha Cristoforetti doll. Now she just needs an @astro_nicole doll. Let’s see if Mattel can make that happen. #stem #womeninspace #iss #internationalspacestation #nasa #spacescience #barbie #barbiedoll #mattel https://www.instagram.com/p/CU3b4dIMZ0z/?utm_medium=tumblr
Sometimes, a little of “The Right Stuff” in your kit can be that extra motivation in your day. #therightstuff #space #chuckyeager #nasa #stem #beemansgum #airbornescienceprogram #solarsystemambassador https://www.instagram.com/p/CMQ0WlMjBMa/?igshid=xtntgh9dbstf
This arrived in the mail the other day. Nice touch! Proud to be a part of such a wonderful space science family! @spacecampusa @spacecampalumni @rocketcenterusa #stem #space #nasa #huntsvillealabama @visithuntsvilleal https://www.instagram.com/p/CML70GGjfrM/?igshid=ot9ckg0kfkg5
We use filters and adjustments to bring out details in the images Perseverance sends us from Mars. These adjustments help scientists on Earth learn more about our planetary neighbor. #nasajpl #perseverance #stem #marsrover #solarsystemambassador . . jmbrackett.com https://www.instagram.com/p/CL8QvzSjhYR/?igshid=1e5frwtksyn6e
I know it’s a very specific category, but I still can’t believe this! Thank you to my friends and family! #space #iss #internationalspacestation #childrensbooks #stem #steam https://www.instagram.com/p/CJZberVjUrF/?igshid=tb8xj1y7quxl
It’s here! My first children’s book for ages 4-7 is available on Amazon. “Mission, GO!” by Johnathan Brackett is available in Kindle form or paperback. Thanks to friends and family for the encouragement. #space #astronaut #stem #steam #spaceflight #iss #internationalspacestation https://www.instagram.com/p/CJJXR_njF53/?igshid=1gqq80oafbo1b
Astronaut Training Experience at the U.S. Space & Rocket Center! #nasa #orionspacecraft @rocketcenterusa @spacecampusa #space #spaceflight #stem #stemeducation #iss #internationalspacestation #astronaut #huntsvillealabama @visithuntsvilleal (at U.S. Space & Rocket Center) https://www.instagram.com/p/CIKVmOcjcdQ/?igshid=1pki5qwzwoc25
In about 3 weeks, I’ll be attending Astronaut Training Experience at SpaceCamp as an educator! I’m so excited! Not bad for John, the world’s biggest 12 year old. Speaking of 12, that is also the number of former and current astronauts who have attended SpaceCamp. Astronaut Kate Rubins, who is on the ISS right NOW, attended as a seventh grader. #nasa @issnationallab @iss #space #stemeducation #spacecamp #iss #huntsvillealabama #launchamerica #stem https://www.instagram.com/p/CHcDEIWjriP/?igshid=rb5zh2exe8bt
Looking forward to the launch of Perseverance as part of MARS2020. Hoping to continue conducting educational opportunities for students in my area. @nasa @nasajpl #mars #marsrover #perseverance #stem #steam #stemeducation @nasasolarsystem https://www.instagram.com/p/CDNrSYAHsR3/?igshid=1c5lo9rnvwtop
Hosted a “Story Time From Space” event today at Kate’s camp. The kids learned about the ISS and all of the exciting experiments taking place up there. They also made artwork for the Space for Art Foundation’s BEYOND project. @issnationallab @spaceforartfoundation @iss #iss #space #issnationallab #astronauts #spacestation #science #stem @nasa #nasa https://www.instagram.com/p/CDCKwFKnIG3/?igshid=116ibjl2qrlwa
Out Now! . Pathway to the Stars: Part 7, Span of Influence . "To be worthy to journey the stars, conditions must be such that if a group of explorers were to return home many millennia later, humanity will not have faded away into nothing. Instead, they will have preserved the homeworld and home solar system, and even improved upon the beauty, the abundance, and the ability of longevity of life in every way that is positive and possible." . ~ Eliza Williams works with her team in the Pathway organization to increase her span of influence throughout the world. Journey with Vesha Celeste as she continues her adventures with Yesha Alevtina in the Virtual Universe, understanding more fully how Eliza's team has become the enigmatic propagator of the future. With tech cities spanning the Solar System yet hidden from those who have not been read-in, humanity will be breath taken to behold them. Eliza takes on some of the biggest titans of every industry and teaches them what she believes will fuel the future -- kindness, shared-well-being, compassion, and consent, or what she coins as Universal Ethics! . Span of Influence - ISBN: 9781951321055, LCCN: 2019918436 eBook: https://www.amazon.com/dp/B081XHLJ36 Paperback: https://www.amazon.com/dp/1951321073 . #sciencefiction #scifi #spaceopera #fantasy #stem #astronomy #industry #wellbeing #author #matthewjopdyke #ebook #paperback #amazon https://www.instagram.com/p/B5syxGIh4Ac/?igshid=1a0lrrqlkt4kv
Enjoy this First-Year-Anniversary compilation of all of my works in one title: A Cosmic Legacy: From Earth to the Stars This title includes the following works wrapped up into one story: Further Than Before: Pathway to the Stars, Part 1 Further Than Before: Pathway to the Stars, Part 2 Pathway to the Stars: Part 1, Vesha Celeste Pathway to the Stars: Part 2, Eliza Williams Pathway to the Stars: Part 3, James Cooper Pathway to the Stars: Part 4, Universal Party Pathway to the Stars: Part 5, Amber Blythe Pathway to the Stars: Part 6, Erin Carter "Our beautiful mother world ached for a reprieve from the injustices of many, courtesy of cultures and governance systems, that forgot how to love, how to be kind, how to include others, and how to think beyond the scope of greed and power, but within the visions of shared joy and well-being." Together with the organization Eliza Williams founded, called Pathway, she and her growing team will take us on a fantastical and Utopian journey to get us out and into the farthest reaches of space. There are dilemmas such as the physiological effects of space on each of us, as well as the need for longevity and a desire to still be able to visit loved ones following long journeys. Eliza and her team develop capabilities, so we can overcome the challenges ahead and are determined to stabilize a rocky economy, wipe away suffering, violence, disease, cartels, terrorism, and trafficking in persons. They work together to tame seismic activity, weather, and fires. She and her friends tackle ways to prevent extinction and provide solutions to quality of life concerns. They even consider the longevity of our Sun and our Earth's capacity to preserve life. Eliza tackles each of these issues to get us out, and into the stars, so we can begin our biggest quest--to help our Universe breathe ever so lightly. #amazing #science #fiction #novels #best #new #books #scifi #online #read #longevity #CRISPR #physiology #neurology #physics #theoretical #philosphical #politcal #educational #STEM #AmazonAuthor #BarnesAndNobleAuthor #wellbeing #quality #biotech #nanotech #SpaceOpera #astronomy #selfpublished https://www.instagram.com/p/B2GkDbYBs0y/?igshid=ufavr7j6lsy1
How tf does one get a B+ at 90/100 marks on a math test?????
Bitches take on 7 minor projects, 3 certification courses, the most complex of electives and 4 recently picked-up hobbies and then expect beauty sleep, mental stability and good GPA all in one semester.
It's me. I am bitches
Footage from vibration and thermal vacuum testing of the SCALPSS cameras and data storage unit.
Credits: NASA/Gary Banziger
This little black camera looks like something out of a spy movie — the kind of device one might use to snap discrete photos of confidential documents.
It's about half the size of a computer mouse.
The SCALPSS cameras, one of which is pictured here prior to thermal vacuum testing, are about the size of a computer mouse. Credits: NASA
But the only spying this camera — four of them, actually — will do is for NASA researchers wondering what happens under a spacecraft as it lands on the Moon.
It's a tiny technology with a big name — Stereo Camera for Lunar Plume-Surface Studies, or SCALPSS for short — and it will journey to the Moon in 2021 as a payload aboard an Intuitive Machines Nova-C lunar lander spacecraft. Intuitive Machines is one of two U.S. companies delivering technology and science experiments to the lunar surface later this year as part of NASA's Commercial Lunar Payload Services (CLPS) initiative. SCALPSS will provide important data about the crater formed by the rocket plume of the lander as it makes its final descent and landing on the Moon's surface.
As part of the Artemis program, NASA will send robots and humans to study more of the Moon than ever before. The agency plans to establish sustainable lunar exploration by the end of the decade, and has outlined its Artemis Base Camp concept for the lunar South Pole. Landers may deliver multiple payloads very near one another. Data such as that from SCALPSS will prove aid in computer models that inform subsequent landings.
SCALPSS team members prepare the cameras and data storage unit for vibration testing. Credits: NASA/David C. Bowman
"As we send bigger, heavier payloads and we try to land things in close proximity to each other, first at the Moon then at Mars, this ability to predict landing impacts is very important," said Michelle Munk, principal investigator for SCALPSS at NASA's Langley Research Center in Hampton, Virginia.
The four SCALPSS cameras, which will be placed around the base of the commercial lander, will begin monitoring crater formation from the precise moment a lander's hot engine plume begins to interact with the Moon's surface.
"If you don't see the crater when it starts to form, you can't really model it," said Munk. "You've got to have the start point and the end point and then you can figure out what happened, in between."
The cameras will continue capturing images until after the landing is complete. Those final stereo images, which will be stored on a small onboard data storage unit before being sent to the lander for downlink back to Earth, will allow researchers to reconstruct the crater's ultimate shape and volume.
The SCALPSS data storage unit will store the imagery the cameras collect as the Intuitive Machines Nova-C lunar lander spacecraft makes its final descent and lands on the Moon's surface. Credits: NASA
Testing to characterize the SCALPSS camera and lens took place last year at NASA's Marshall Space Flight Center in Huntsville, Alabama. Researchers conducted radial distortion, field-of-view and depth-of-focus tests among others. They also ran analytical models to better characterize how the cameras will perform. Development of the actual SCALPSS payload took place at Langley. And over the summer, researchers were able to enter the lab to assemble the payload and conduct thermal vacuum and vibration tests.
That lab access involves special approval from officials at Langley, which is currently only giving access to essential employees and high-priority projects to keep employees safe during the ongoing COVID-19 pandemic. SCALPSS was one of the first projects to return to the center. Before they could do that, facilities had to pass safety and hazard assessments. And while on center, the team had to follow strict COVID-19 safety measures, such as wearing masks and limiting the number of people who could be in a room at one time. The center also provided ample access to personal protective equipment and hand sanitizer.
The SCALPSS hardware was completed in late October and will be delivered to Intuitive Machines in February.
"Development and testing for the project moved at a pretty brisk pace with very limited funds," said Robert Maddock, SCALPSS project manager. "This was likely one of the most challenging projects anyone on the team has ever worked on."
But Munk, Maddock and the entire project team have embraced these challenges because they know the images these little cameras collect may have big ripple effects as NASA prepares for a human return to the Moon as part of the Artemis program.
"To be able to get flight data and update models and influence other designs — it's really motivating and rewarding," said Munk.
Hot off the heels of this project, the SCALPSS team has already begun development of a second payload called SCALPSS 1.1. It will be flown by another CLPS commercial lander provider to a non-polar region of the Moon in 2023 and collect data similar to its predecessor. It will also carry two additional cameras to get higher resolution stereo images of the landing area before engine plume interactions begin, which is critical for the analytic models in establishing the initial conditions for the interactions.
NASA’s Artemis program includes sending a suite of new science instruments and technology demonstrations to study the Moon, landing the first woman and next man on the lunar surface in 2024, and establishing a sustained presence by the end of the decade. The agency will leverage its Artemis experience and technologies to prepare for humanity’s the next giant leap – sending astronauts to Mars as early as the 2030s.
Joe Atkinson NASA Langley Research Center
When Jasmine Byrd started her job at NASA about two years ago, she knew nothing about Katherine Johnson, the mathematician and “human computer” whose achievements helped inspire the book and movie “Hidden Figures.”
Jasmine Byrd, who works as a project coordinator at NASA's Langley Research Center, looks at an image of Katherine G. Johnson in the lobby of the building named in Johnson's honor. "I was just enthralled with her story," Byrd said.
Credits: NASA/David C. Bowman
At that point, the release of the film was still months away. But excitement was building — particularly at Byrd’s new workplace. She’d arrived at NASA’s Langley Research Center in Hampton, Virginia, where Johnson spent her entire, 33-year NACA and NASA career.
Soon, Byrd felt a strong connection to a woman she’d never met, nearly 70 years her senior.
“I was just enthralled with her story,” said Byrd, a project coordinator for NASA’s Convergent Aeronautics Solutions Project. Today, she works inside Langley’s Building 1244, the same hangar-side location where Johnson crunched numbers for the Flight Research Division in the 1950s.
View images of Katherine G. Johnson through the years at this photo gallery: https://go.nasa.gov/2MskBOq
Credits: NASA via Flickr
“I am thankful for the bridge that Katherine built for someone like myself to easily walk across,” Byrd said. “It helps me to not take this opportunity for granted. I know there were people before me who put in a lot of work and went through a lot of turmoil at times to make sure it was easier for people like myself.”
As Katherine G. Johnson’s 100th birthday — Aug. 26 — approached, many Langley employees expressed admiration for the woman whose math powered some of America’s first triumphs in human space exploration.
Johnson did trajectory analysis for Alan Shepard’s May 1961 mission Freedom 7, America’s first human spaceflight. At a time when digital computers were relatively new and untested, she famously checked the computer’s math for John Glenn’s historic first orbital spaceflight by an American in February of 1962.
Those are just two bullet points in a brilliant career that stretched from 1953 to 1986.
Her 100th birthday was recognized throughout NASA and around the world. But at Langley, the milestone created an extra measure of pride and joy.
Graduate research assistant Cecilia Stoner, stopped on her way to Langley’s cafeteria, said she admires how Johnson remained humble — even when showered with accolades ranging from the Presidential Medal of Freedom to toys made in her likeness.
Stoner’s lunch companion, Erin Krist, chimed in. “It’s incredible what she managed to do,” said Krist, a summer intern. “She paved the way for women. We couldn’t work here today if that hadn’t happened.”
Langley’s acting chief technologist, Julie Williams-Byrd, echoed that thought.
Julie Williams-Byrd, acting chief technologist at NASA's Langley Research Center, said she admires Katherine Johnson's technical excellence and support of STEM education.
Credits: NASA/David C. Bowman
“She opened the doors for the rest of us,” Williams-Byrd said. “Between her and Dorothy Vaughan and Mary Jackson and all the women who were at Langley at the time. It didn’t matter if they were called computers in skirts. They were here to do a job.
“It’s typical NASA culture, right?” Williams-Byrd said. “We have a mission. Everybody’s going to jump in and do what they can to make that mission successful.”
She also admires Johnson’s devotion to promoting science, technology, engineering and math studies among young people.
“While she was very focused on the technical work and really did great things there, her balance of life and responsibilities to those who would come up behind her, that really resonates with me,” Williams-Byrd said.
Remarkably, a handful of current Langley employees worked side by side with Johnson. Among them is research mathematician Daniel Giesy, who started at the center in 1977.
“On my first job here, I was teamed with Katherine Johnson,” Giesy said. “She mentored me.”
Johnson showed Giesy the ropes as he and Johnson both provided mathematical and computer programming support for researchers working to find new tools for designing aircraft control systems. They eventually coauthored papers including “Application of Multiobjective Optimization in Aircraft Control Systems Design” from 1979, written with Dan Tabak.
“I would describe her as a good colleague, competent, courteous,” Giesy said. “She had her moments. If you slopped coffee on the way back from the break room, you bloody well better clean up after yourself. You don’t leave it for the janitor staff to work on.
“But she was focused on getting the job done,” Giesy said. “At that point in time, she wasn’t resting on laurels.” Only later would Giesy learn of her historic contributions to early space missions. “She did not brag on herself particularly.”
Regina Johns, who today recruits participants for tests related to crew systems, aviation operations and acoustics, arrived at Langley in 1968 as a high school intern. She returned as a contract employee in 1973 and has worked at Langley ever since.
This 1985 photo shows Katherine G. Johnson — front row, blue dress — posing with the Langley team she worked with at the time. Her coworker Dan Giesy is the bearded man two rows behind her on the far right.
Credits: NASA
In those early days, she remembers running into Johnson on campus occasionally. Johnson would often stop and talk, asking about her plans and what she was working on. Johns would eventually get to know Mary Jackson, another Langley researcher central to the “Hidden Figures” story.
“There weren’t a lot of minorities here at that time,” Johns said. “To know that they were engineers and mathematicians, it just gave me hope that, if they can do it, it can be done. If you work hard, you can do it.”
She, like many across the agency, said she’d like to send Johnson a birthday message.
“If I had a chance, I would say, thank you for setting the pathway for young people. Thank you for showing us that we can do anything.”
In terms of lives touched, Johnson’s work with youth stands alongside her impact as a world-class mathematician. Langley’s Katherine G. Johnson Computational Research Facility, which opened in September 2017, offers a physical reminder of her contributions.
“The Katherine Johnson building is near where I work, so I think about her often,” said Kimberly Bloom, director of Langley’s Child Development Center. Johnson’s life and accomplishments would have deserved attention even if Hollywood hadn’t come calling, she suggests.
Kimberly Bloom, director of Langley's Child Development Center, said Katherine Johnson made a positive impact on NASA culture and on America as a whole.
Credits: NASA/Sam McDonald
“It’s an important story — how she empowered women of all races,” Bloom said. “And she encouraged kids to learn. She influenced culture here at NASA, but also beyond and made an impact. She certainly is a role model.
“I’d like to thank her for all she’s done not only for NASA but also for this country,” Bloom said.
Learn more about Katherine G. Johnson's life and contributions to NASA at this link.
Sam McDonald NASA Langley Research Center
NASA Langley researchers are experts in modeling and simulations for entry, descent and landing, working on missions since the Viking lander in 1976. In this episode, we explore the challenges of guiding landers like Mars InSight through the Martian atmosphere for a safe landing.
NASA InSight launched on March 5, 2018.
For more, visit https://mars.nasa.gov/insight/
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system, including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
TESS will survey 200,000 of the brightest stars near the sun to search for transiting exoplanets. The mission is scheduled to launch in 2018.
The TESS launch date is NLT June 2018 (the current working launch date is April 2018).
Music: "Prototype" and "Trial" both from Killer Tracks. Credit: NASA’s Goddard Space Flight Center
NASA Goddard Space Flight Center
Two Hampton Roads high schools will soon have their creations judged by NASA to see if they make it aboard the International Space Station. One is a food recipe for astronauts. The other is hardware for the space station.
Students from Phoebus High School prepare their breakfast dish at HUNCH's Preliminary Culinary Challenge at NASA's Langley Research Center.
Credits: NASA/David C. Bowman
Both projects are part of a NASA program called HUNCH, or High school students United with NASA to Create Hardware.
NASA’s Langley Research Center in Hampton, Virginia, hosted a preliminary culinary challenge March 5, where two schools cooked up a breakfast entrée. The shrimp and grits with gouda cheese dish from Phoebus High School in Hampton made it to the final competition at NASA’s Johnson Space Center in Houston scheduled for April 26.
Their work will be judged by Johnson Food Lab personnel, industry professionals, the space station program office, and astronauts for quality and taste. They’ll also be rated on a research paper and presentation video. The winning entree will be created by the Johnson Space Food Lab and sent up to the space station for astronauts to enjoy.
Space Hardware
Poquoson High School student Travis Redman, left, talks with Glenn Johnson, a design engineer at NASA's Johnson Space Center, about an astronaut boot that would lock in place preventing floating in a no gravity environment.
Credits: NASA/George Homich
Langley also hosted a critical design review March 6, when four schools showed off the real-world products they fabricated to tackle challenges faced by astronauts living in space. The team from Poquoson High School in Poquoson, Virginia, was selected as a finalist and faces a final design and prototyping review April 25 at Johnson.
The hardware includes a pin kit, can squisher, exercise harness, crew reminder tool, location app tool, and hygiene caddy. Many of the hardware projects are items personally requested by space station crew.
The North Carolina School of Science and Mathematics, who also presented their projects at Langley, will join Poquoson High to present their works at Johnson. The projects the team from the Durham-based school had were an augmented reality object identification annotation tool, automatic location stowage system, and a single point exercise harness.
“The HUNCH Program can change the trajectory of a student’s life, by providing various avenues beyond the STEM (science, technology, engineering and math) field and opportunities to participate in the global effort to research in space,” said Yolanda Watford Simmons, manager of Langley’s HUNCH program.
In 2015, a culinary team from Phoebus High won the culinary challenge and their entrée, Jamaican rice and beans with coconut milk, is now included in an astronaut cookbook. Read more on their success here.
For more information on HUNCH, go here.
Eric Gillard NASA Langley Research Center
From its perch on the International Space Station, SAGE III is measuring stratospheric ozone as well as other gases and aerosols.
An orbiting science instrument whose legacy dates back 34 years continues to beam back data on Earth’s protective ozone layer – this time, from a perch on the hull of the International Space Station.
The Stratospheric Aerosol and Gas Experiment III (SAGE III), a NASA Langley Research Center-led mission, was launched on Feb. 19, 2017 and installed on the International Space Station during a 10-day robotic operation.
Since March 2017, the instrument has been measuring and collecting data on Earth’s sunscreen, stratospheric ozone, as well as other gases and aerosols, which are tiny particles in the atmosphere at all altitudes.
The SAGE III instrument makes these measurements through occultation, which involves looking at the light from the Sun or the Moon as it passes through Earth’s atmosphere at the edge, or limb, of the planet. The initial set of atmospheric data collected from the SAGE III instrument was released publicly in October 2017, and the first lunar data was released in January 2018.
Because the SAGE III instrument makes measurements through remote sensing - collecting data from some distance away - the science validation team cannot be sure if the data they are receiving is accurate without first validating it.
To do that, SAGE III science data must be compared to in-situ measurements, or measurements made by other instruments or systems that come in direct contact with the ozone, aerosol, or gas data being collected. These in-situ measurements are collected by the Network for Detection of Atmospheric Composition Change (NDACC), an international group, part of the National Oceanic and Atmospheric Administration, composed of research sites across the world collecting data on the Earth’s atmosphere.
“These sites have been vetted, validated, and have a long statistical history of making science measurements with their instruments,” said SAGE III Science Manager Marilee Roell.
The NDACC will collect these validated measurements through various methods, with two primary methods being through lidar - light detection and ranging - and sondes. Lidar is a ground-based measurement technique that uses a laser to shoot a beam into the Earth’s atmosphere, causing light to scatter by the atmospheric gases and particles. Being able to detect the distance to these gases and particles, the lidar can gather data on the Earth’s atmospheric composition.
Sondes are lightweight, balloon-borne instruments that are flown thousands of feet into the Earth’s atmosphere. As the instrument ascends, it transmits measurements of particle and gas concentrations by radio to a ground-based receiving station. Sondes are used daily across the globe to capture meteorological data, allowing people to check weather conditions each morning.
The science validation team is using NDACC ozone and aerosol lidar data, as well as ozone and water vapor sonde measurements, to validate science data collected from SAGE III.
“We want to match our vertical science product to an externally validated source. It helps the science community have confidence in our data set,” said Roell.
The team is working towards having an externally validated aerosol sonde to compare to the collected SAGE III data. This effort is in the preliminary stages of validating the aerosol balloon sonde against a suite of aerosol sounders, including lidar.
The team is working to validate science data with NDACC locations in Boulder, Colorado and Lauder, New Zealand, which fall within similar latitude bands in the northern and southern hemispheres. To be precise in validation efforts, the lidar or sonde measurement is taken at the same time and location that SAGE III is passing over and collecting equivalent data.
One of the most recent validation efforts took place in Table Mountain, California, and Haute Provence in France. Both locations include validated lidar systems, with lidar being operated by NASA’s Jet Propulsion Laboratory in Table Mountain, California.
Validation efforts were taken a step further by including a third source of measurements: NASA’s DC-8 aircraft. The aircraft, based out of NASA Armstrong Flight Research Center in Palmdale, California, operates as a flying science laboratory. It helps validate the accuracy of other remote-sensing satellite data, such as SAGE III, and can fly under the satellite’s path to collect the same measurements.
Validating the science data using this method required SAGE III, the NASA DC-8 aircraft, and the lidar system in California or France to be taking measurements at the same time and location. The science validation team worked to have all three systems line up while taking measurements and collected some coinciding science data.
NASA also created a validation website for other NDACC sites to use. The site displays SAGE III overpasses of NDACC sites that are three weeks out or less. These sites can choose to make lidar or sonde measurements at the same time as the instrument overpass, and compare them to SAGE III data collected to see if the two sets coincide. The validation team is pursuing additional NDACC sites to coordinate overpass timeframes when the sites may be taking lidar and sonde measurements.
The SAGE III team will present initial science validation data at the European Geosciences Union conference in Vienna, Austria this April.
SAGE III is the latest in a legacy of Langley instruments that go back to the Stratospheric Aerosol Measurement (SAM), which flew on the 1975 Apollo-Soyuz mission. SAGE II, operational from 1984 to 2005, measured global declines in stratospheric ozone that were later shown to be caused by human-induced increases in atmospheric chlorine. Data from it and other sources led to the development of the Montreal Protocol on Substances that Deplete the Ozone Layer.
After the passage of the protocol, SAGE II data also provided key evidence that the ozone layer was showing signs of recovery.
SAGE III, which launched to the station Feb. 19 from Kennedy Space Center in Florida, will continue to monitor that recovery, but with more of Earth’s atmosphere in its sights. SAGE II monitored only the stratosphere. SAGE III is monitoring both the stratosphere and the mesosphere, which is the layer directly above the stratosphere.
Ozone in the upper atmosphere acts as Earth’s sunscreen, protecting the surface from cancer-causing, crop-damaging ultraviolet rays. Atmospheric aerosols contribute to variability in the climate record.
Allison Leybold NASA Langley Research Center
In many ways, the military and NASA couldn’t be different. Frank Batts has managed to navigate both worlds with precision, grace and just a bit of humor. After serving as a major general in the Army National Guard, he made the transition to working on computers as an engineer at NASA’s Langley Research Center in Hampton, Virginia.
“They’re opposites, but that keeps me balanced,” Batts said. “In the Army, you’re out there blowing things up in the field. Here, you’re trying to build electronic computer components.”
Batts is a senior data-systems engineer with the Advanced Measurement and Data Systems Branch at NASA’s Langley Research Center in Hampton, Virginia. He has been at Langley for 34 years and has seen the tools of the job change.
“Technology has changed tremendously,” said the 63-year-old Batts. “When we started out in the eighties, we were all using proprietary operating systems on real-time computers that were not widely used or understood. Now we’re pretty much using PCs for our work.”
In addition to his NASA career, Batts served his country with distinction in the armed forces – and made history along the way. He retired from the Army National Guard in 2012 as a major general and commander of the 29th Infantry Division in Fort Belvoir, Virginia - the first African-American to hold that post. He also served in the West Virginia and Tennessee national guards.
The adventure begins
Batts’ journey started in 1976, when he was accepted at North Carolina Agricultural and Technical State University in Greensboro and joined the Army Reserve Officer Training Corps (ROTC) there.
While at the university, Batts entered a cooperative program with the Union Carbide Corp., working in a gaseous diffusion plant in the nuclear division. After graduating from North Carolina A&T, Batts worked fulltime as an electrical engineer with Union Carbide, and as an engineering officer in the West Virginia National Guard.
“Initially when you get out of college, you’re competing with engineers from other schools,” Batts said. “I found out pretty soon that regardless of what school you came from, it got down to who can really deliver projects on time and on budget.”
Batts was pursuing a master’s degree in electronics engineering at North Carolina A&T around the time IBM introduced personal computers. He was told PCs were a fad and not worth investing in, but he glimpsed the future and got on board.
“It looked like to me it was the way to go,” he said.
But then in 1979, the Three Mile Island nuclear power plant in Pennsylvania experienced a partial core meltdown, releasing radioactive gas into the atmosphere.
The incident changed his professional trajectory, as the Union Carbide-run K-25 facility in Oak Ridge, Tennessee, where Batts was working, enriched uranium for nuclear power plants.
“Prior to Three Mile Island there were plans to construct nuclear plants all over the country, and K-25’s future was secure,” Batts said. “After Three Mile Island, all of those plans were dropped; we had more enriched uranium than was needed and K-25 was slated for closure.”
That meant he needed another job. While looking to move on, Batts found that NASA Langley was using a computing system similar to the one he used while he was with Union Carbide. He sets his sights on Langley, and has been on center as an electronic engineer since 1984 .
Two worlds in one
Batts’ military and NASA worlds were peacefully cohabitating until the Sept. 11, 2001, terrorist attacks. Batts was soon activated and from May 2004 through April 2005, served with the 54th Field Artillery Brigade Headquarters as the mobile liaison team chief in Kabul, Afghanistan as part of Operation Enduring Freedom.
“With the Army comes the leadership responsibilities. I managed a few thousand troops, and that’s no fun. I make an effort in my career at NASA to stay on the technical side rather than on the administrative side of things,” he said with a laugh.
What is fun for Batts, besides getting in more rounds at the golf course in his spare time, is serving as an example for engineering students though NASA’s outreach programs.
Batts, as the first engineer in his family, said he realizes the importance of recognizing those who blazed the trail for others.
“I have to pay homage to the people who came before me,” he said. “Before I was able to command a battalion, there was some else who commanded one, and did a credible enough job so that I had an opportunity.”
Batts also enjoys the reaction of people when they learn he works for NASA.
“There’s a lot of prestige that goes with working at NASA,” he said. “When people find out you work at NASA, they seem to look at you a bit differently.”
Eric Gillard NASA Langley Research Center
NASA centers across the country, including the Langley Research Center in Hampton, Virginia, are opening their doors Monday, Feb. 12, to media and social media for 'State of NASA' events.
Activities include a speech from acting NASA Administrator Robert Lightfoot, and unique opportunities for a behind-the-scenes look at the agency's work. These events follow President Trump's Fiscal Year 2019 budget proposal delivery to the U.S. Congress.
Events at NASA centers will include media tours and presentations on the agency's exploration goals for the Moon, Mars and worlds beyond, the innovative technologies developed and under development, as well as the scientific discoveries made as NASA explores and studies Earth and our universe, and advancements toward next-generation air travel.
Lightfoot will provide a 'State of NASA' address to the agency's workforce at 1 p.m. EST from Marshall Space Flight Center in Huntsville, Alabama. His remarks will air live on NASA Television and the agency's website, https://www.nasa.gov/live. Following the presentation, NASA centers will host tours of their facilities for media and social media guests.
At Langley, the news and social media event will run from 1 to 5 p.m. and include:
A look at the SAGE III flight control center. SAGE III is the Stratospheric Aerosol and Gas Experiment III studying Earth's atmosphere from the International Space Station.
A visit to the research aircraft hangar to see aircraft that are used in support of airborne research campaigns, as well as an inflatable heat shield that will enable landing on distant worlds.
A view of the labs where sonic-boom testing is being done to lower their impact so that commercial aircraft can be developed to fly supersonically over land.
A tour in a lab where inflatable space structures are being developed.
Follow the hashtag #StateOfNASA for more!
By the end of the year, over 70 different models had been tested by facilities at the Air Force's Arnold Engineering Development Center and the NASA Langley, Ames, and Lewis Research Centers.
Here at NASA Langley Research Center, a lot of those tests took place in our 7 X 10-Foot High Speed Tunnel (pictured above).
Some tests also took place in our 20-Foot Vertical Spin Tunnel.
Leaders from NASA’s Langley Research Center in Hampton, Virginia, and Wallops Flight Facility on Wallops Island, Virginia, described their accomplishments and future missions at NASA’s AeroSpace Days on Feb. 6 and 7 in Richmond.
NASA Langley Director Dave Bowles, left, meets with Virginia Secretary of Education Atif Qarni at NASA AeroSpace Days Feb. 6 in Richmond, Virginia.Credits: NASA/David C. Bowman
NASA officials and representatives from the aerospace industry met with all 140 members of the General Assembly or their staffs, as well as Gov. Ralph Northam, Lt. Gov. Justin Fairfax, and cabinet members.
One of those lawmakers was newly elected Del. Kathy Convirs-Fowler. When she finished getting autographed pictures of Lindgren for her two children, she asked officials how aerospace initiatives can be advanced to students.
“As a former teacher, I’m very big on the programs we can implement,” she said, adding that a goal of hers is to increase the number of women and girls in science, technology, engineering, art and math (STEAM) public school programs.
It’s not every day you get to shake hands with an astronaut. Kjell Lindgren, who flew on the International Space Station, was a popular face in the group of NASA representatives on an annual journey to bring the agency’s message to Virginia lawmakers.
Sen. John Consgrove was so fired up to talk with Lindgren that he apologized for it.
“I’m sorry I’m ignoring everybody else, but I don’t get to speak to an astronaut every day,” he said.
Lindgren is used to the outsized attention, and welcomed it as an opportunity to talk about NASA’s contributions to Virginia.
“It’s one of my favorite parts of the job,” he said. “You can see that they’re very enthusiastic, very interested and excited.”
Leaders from NASA’s Langley Research Center in Hampton, Virginia, and Wallops Flight Facility on Wallops Island, Virginia, described their accomplishments and future missions at NASA’s AeroSpace Days on Feb. 6 and 7 in Richmond.
NASA officials and representatives from the aerospace industry met with all 140 members of the General Assembly or their staffs, as well as Gov. Ralph Northam, Lt. Gov. Justin Fairfax, and cabinet members.
One of those lawmakers was newly elected Del. Kathy Convirs-Fowler. When she finished getting autographed pictures of Lindgren for her two children, she asked officials how aerospace initiatives can be advanced to students.
“As a former teacher, I’m very big on the programs we can implement,” she said, adding that a goal of hers is to increase the number of women and girls in science, technology, engineering, art and math (STEAM) public school programs.
“We want to excite the next generation,” Langley Deputy Director Clayton Turner told her. “That’s part of what we do.”
NASA Langley and Wallops have strong partnerships with private industry, including numerous technology transfer, commercialization and licensing success stories. In 2017, the two NASA centers brought a combined economic impact of $1.3 billion to Virginia and supported more than 10,000 jobs, according to an analysis by a private-sector company contracted by Langley.
“The collaboration has been really helpful,” Turner said.
Also, the state has assets that offer potential for growing the aerospace sector, including multiple universities, more than 285 aerospace firms, 66 public-use airports and a spaceport with access to orbit – one of only four in the U.S.
“By having two NASA centers here in Virginia, it also gives our students something to aim for,” Lindgren said. “The state is very fortunate and unique in that respect to have all those resources.”
AeroSpace Days, held for the past 13 years, aims to leverage those resources to recruit the next generation of explorers. That imperative drives Del. Marcia Price.
“If there’s anything I can do to help, especially in my community, to help with the outreach efforts so that they know about programs so my kids can be a part of the excellent things that are going on, let me know,” she said.
Those thoughts were echoed by Secretary of Education Atif Qarni, who offered to sponsor field trips to Langley and Wallops, speaking engagements, and support of science, technology, engineering and math (STEM)-related legislation.
“We’re here to help any way we can,” he said.
In addition to meeting lawmakers and their staffs, NASA was formally recognized on the floor of the Virginia Senate by Sen. Mamie Locke during session. Locke praised Langley’s contributions over the last 100 years and asked the group of NASA employees participating in AeroSpace Days to stand up and be recognized.
“That was a cool moment,” said Langley spokesman Michael Finneran.” It’s very satisfying to realize that we’re helping improve people’s lives through what we and our partners do. We felt like rock stars for a few minutes.”
To view a photo gallery of 2018 AeroSpace Days, click here.
Eric Gillard NASA Langley Research Center
NASA also uses symbols for specific projects within the agency. Each space shuttle crew designs a patch that represents what it will do during the mission. Some robotic probes sent to explore space have had mission patches. From the wing of the space shuttle to the top of the NASA homepage, the agency's official insignia is probably its best-known symbol.
The round red, white and blue insignia, nicknamed the "meatball," was designed by employee James Modarelli in 1959, NASA's second year. The design incorporates references to different aspects of the mission of the National Aeronautics and Space Administration. The round shape of the insignia represents a planet. The stars represent space. The red v-shaped vector represents aeronautics. The circular orbit around the agency's name represents space travel.
After it was introduced, the "meatball" was the most common symbol of NASA for 16 years, but in 1975 NASA decided to create a more "modern" logo. That logo, which consisted of the word "NASA" in a unique type style, was nicknamed the "worm." That logo was retired in 1992, and the classic meatball insignia has been the most common agency symbol since.
In addition to the insignia, NASA has another official symbol. If the meatball is the everyday face of NASA, the NASA seal is the dressed-up version. The NASA administrator uses the seal for formal purposes such as award presentations and ceremonies. Like the meatball insignia, the seal also includes planet, stars, orbit and vector elements
NASA also uses symbols for specific projects within the agency. Each space shuttle crew designed a patch that represents what they were going to do during the mission. Some robotic probes sent to explore space have had mission patches.
Image Credits: NASA
From enabling astronauts to practice moon landings to aircraft crash testing to drop tests for Orion, NASA's gantry has come full circle.
The gantry, a 240-foot high, 400-foot-long, 265-foot-wide A-frame steel structure located at Langley Research Center in Hampton, Va., was built in 1963 and was used to model lunar gravity. Originally named the Lunar Landing Research Facility (LLRF), the gantry became operational in 1965 and allowed astronauts like Neil Armstrong and Edwin "Buzz" Aldrin to train for Apollo 11's final 150 feet before landing on the moon.
Because the moon's gravity is only 1/6 as strong as Earth's, the gantry had a suspension system that supported 5/6 of the total weight of the Lunar Excursion Module Simulator (LEMS), the device the astronauts used to perform the tests. This supportive suspension system imitated the moon's gravitational environment. Additionally, many of the tests were conducted at night to recreate lighting conditions on the moon.
Neil Armstrong with the LEMS at the Lunar Landing Research Facility. This picture (below) was taken in February 1969 - just five months before Armstrong would become the first person to set foot on the surface of the moon.
Aircraft Crash Test Research
After the Apollo program concluded, a new purpose emerged for the gantry – aircraft crash testing. In 1972, the gantry was converted into the Impact Dynamics Research Facility (IDRF) and was used to investigate the crashworthiness of General Aviation (GA) aircraft and rotorcraft. The facility performed full-scale crash tests of GA aircraft and helicopters, system qualification tests of Army helicopters, vertical drop tests of Boeing 707 and composite fuselage sections and drop tests of the F-111 crew escape capsule.
The gantry was even used to complete a number of component tests in support of the Mars Sample Return Earth Entry Vehicle.
With features including a bridge and a 72-foot vertical drop tower, the gantry was able to support planes that weighed up to 30,000 pounds. Engineers lifted aircraft as high as 200 feet in the air and released them to determine how well the craft endured the crash. Data from the crash tests were used to define a typical acceleration for survivable crashes as well as to establish impact criteria for aircraft seats. The impact criteria are still used today as the Federal Aviation Administration standard for certification.
In 1985, the structure was named a National Historic Landmark based on its considerable contributions to the Apollo program.
Revitalized Space Mission
The gantry provides engineers and astronauts a means to prepare for Orion's return to Earth from such missions. With its new mission, the gantry also received a new name – the Landing and Impact Research (LandIR) Facility.
Although originally capable of supporting only 30,000 pounds, the new bridge can bear up to 64,000 pounds after the summer 2007 renovations. Other renovations include a new elevator, floor repairs and a parallel winch capability that allows an accurate adjustment of the pitch of the test article. The new parallel winch system increases the ability to accurately control impact pitch and pitching rotational rate. The gantry can also perform pendulum swings from as high as 200 feet with resultant velocities of over 70 miles per hour.
The gantry makes researching for the optimal landing alternative for NASA's first attempted, manned dry landing on Earth possible. Orion's return on land rather than water will facilitate reuse of the capsule. A water landing would make reuse difficult due to the corrosiveness of salt water.
The testing process involves lifting the test article by steel cables to a height between 40 and 60 feet and swinging it back to Earth. Although the airbags appear most promising, the gantry has the capability to perform different kinds of tests, including a retro rocket landing system and a scale-model, water landing test using a four-foot-deep circular pool. So far, three types of tests have been conducted in support of the Orion program, each progressing from the previous to more realistic features.
The first test consisted of dropping a boilerplate test article that was half the diameter of what Orion will be. For the second round of testing, engineers added a welded structure to the top, with a shape more comparable to Orion to examine the article's tendency to flip or remain upright.
Hydro-Impact
The on-going tests for Orion continue with impacts on water. This is to ensure astronaut safety during a return to Earth mission. Similar to the Apollo program, Orion will re-enter Earth’s atmosphere at very high speeds and after slowing down, deploy parachutes to further slow the descent into the ocean. At NASA Langley Research Center, engineers use the hydro-impact research to determine the stresses on the vehicle and examine its behavior during a mock splashdown.
https://www.nasa.gov/content/katherine-johnson-biography
Date of Birth: August 26, 1918 Hometown: White Sulphur Springs, WV Education: B.S., Mathematics and French, West Virginia State College, 1937 Hired by NACA: June 1953 Retired from NASA: 1986 Actress Playing Role in Hidden Figures: Taraji P. Henson
Being handpicked to be one of three black students to integrate West Virginia’s graduate schools is something that many people would consider one of their life’s most notable moments, but it’s just one of several breakthroughs that have marked Katherine Johnson’s long and remarkable life. Born in White Sulphur Springs, West Virginia in 1918, Katherine Johnson’s intense curiosity and brilliance with numbers vaulted her ahead several grades in school. By thirteen, she was attending the high school on the campus of historically black West Virginia State College. At eighteen, she enrolled in the college itself, where she made quick work of the school’s math curriculum and found a mentor in math professor W. W. Schieffelin Claytor, the third African American to earn a PhD in Mathematics. Katherine graduated with highest honors in 1937 and took a job teaching at a black public school in Virginia.
When West Virginia decided to quietly integrate its graduate schools in 1939, West Virginia State’s president Dr. John W. Davis selected Katherine and two male students as the first black students to be offered spots at the state’s flagship school, West Virginia University. Katherine left her teaching job, and enrolled in the graduate math program. At the end of the first session, however, she decided to leave school to start a family with her husband. She returned to teaching when her three daughters got older, but it wasn’t until 1952 that a relative told her about open positions at the all-black West Area Computing section at the National Advisory Committee for Aeronautics’ (NACA’s) Langley laboratory, headed by fellow West Virginian Dorothy Vaughan. Katherine and her husband, James Goble, decided to move the family to Newport News to pursue the opportunity, and Katherine began work at Langley in the summer of 1953. Just two weeks into Katherine’s tenure in the office, Dorothy Vaughan assigned her to a project in the Maneuver Loads Branch of the Flight Research Division, and Katherine’s temporary position soon became permanent. She spent the next four years analyzing data from flight test, and worked on the investigation of a plane crash caused by wake turbulence. As she was wrapping up this work her husband died of cancer in December 1956.
The 1957 launch of the Soviet satellite Sputnik changed history—and Katherine Johnson’s life. In 1957, Katherine provided some of the math for the 1958 document Notes on Space Technology, a compendium of a series of 1958 lectures given by engineers in the Flight Research Division and the Pilotless Aircraft Research Division (PARD). Engineers from those groups formed the core of the Space Task Group, the NACA’s first official foray into space travel, and Katherine, who had worked with many of them since coming to Langley, “came along with the program” as the NACA became NASA later that year. She did trajectory analysis for Alan Shepard’s May 1961 mission Freedom 7, America’s first human spaceflight. In 1960, she and engineer Ted Skopinski coauthored Determination of Azimuth Angle at Burnout for Placing a Satellite Over a Selected Earth Position, a report laying out the equations describing an orbital spaceflight in which the landing position of the spacecraft is specified. It was the first time a woman in the Flight Research Division had received credit as an author of a research report.
In 1962, as NASA prepared for the orbital mission of John Glenn, Katherine Johnson was called upon to do the work that she would become most known for. The complexity of the orbital flight had required the construction of a worldwide communications network, linking tracking stations around the world to IBM computers in Washington, DC, Cape Canaveral, and Bermuda. The computers had been programmed with the orbital equations that would control the trajectory of the capsule in Glenn’s Friendship 7 mission, from blast off to splashdown, but the astronauts were wary of putting their lives in the care of the electronic calculating machines, which were prone to hiccups and blackouts. As a part of the preflight checklist, Glenn asked engineers to “get the girl”—Katherine Johnson—to run the same numbers through the same equations that had been programmed into the computer, but by hand, on her desktop mechanical calculating machine. “If she says they’re good,’” Katherine Johnson remembers the astronaut saying, “then I’m ready to go.” Glenn’s flight was a success, and marked a turning point in the competition between the United States and the Soviet Union in space.
When asked to name her greatest contribution to space exploration, Katherine Johnson talks about the calculations that helped synch Project Apollo’s Lunar Lander with the moon-orbiting Command and Service Module. She also worked on the Space Shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports. She retired in 1986, after thirty-three years at Langley. “I loved going to work every single day,” she says. In 2015, at age 97, Katherine Johnson added another extraordinary achievement to her long list: President Obama awarded her the Presidential Medal of Freedom, America’s highest civilian honor.
Biography by Margot Lee Shetterly
https://www.nasa.gov/content/katherine-johnson-biography
Sam McDonald NASA Langley Research Center
A new display at the Hampton History Museum offers another view of African-American women whose mathematical skills helped the nation’s early space program soar.
“When the Computer Wore a Skirt: NASA’s Human Computers” opens to the public Saturday, Jan. 21, and focuses on three women — Dorothy Vaughan, Mary Jackson and Katherine Johnson — who were illuminated in Margot Lee Shetterly’s book “Hidden Figures” and the major motion picture of the same name. Located in the museum's 20th century gallery, it was created with support from the Hampton Convention and Visitor Bureau and assistance from NASA's Langley Research Center.
“Langley’s West Computers were helping America dominate aeronautics, space research, and computer technology, carving out a place for themselves as female mathematicians who were also black, black mathematicians who were also female,” Shetterly wrote.
The modestly sized exhibit is comprised of four panels with photos and text along with one display case containing artifacts, including a 1957 model Friden mechanical calculator. That piece of equipment represented state-of-the-art technology when then original human computers were crunching numbers. A three-minute video profiling Johnson —a Presidential Medal of Freedom winner — is also part of the exhibit.
A display case at left contains a 1957 Friden STW-10 mechanical calculator, the type used by NASA human computers including Katherine Johnson. "If you were doing complicated computations during that time, this is what you used," said Hampton History Museum Curator Allen Hoilman. The machine weighs 40 pounds.
Credits: NASA/David C. Bowman
Museum curator Allen Hoilman said his favorite artifact is a May 5, 1958 memo from Associate Director Floyd Thompson dissolving the West Area Computers Unit and reassigning its staff members to other jobs around the center.
“It meant that the segregated work environment was coming to an end,” Hoilman said. “That’s why this is a significant document. It’s one of the bookends.”
That document, along with several others, was loaned to the museum by Ann Vaughan Hammond, daughter of Dorothy Vaughan. Hoilman said family members of other human computers have been contacted about contributing artifacts as well.
Ann Vaughan Hammond worked hard to find meaningful items for the display. “She really had to do some digging through the family papers,” Hoilman said, explaining that the women who worked as human computers were typically humble about their contributions. They didn’t save many mementos.
“They never would have guessed they would be movie stars,” Hoilman said.
For more information on Katherine Johnson, click here.
Credits:
Sam McDonald NASA Langley Research Center
NASA Administrator Charles Bolden, right, and Langley Research Center Director, Dr. David E. Bowles, left, poses for a photo with staff dressed in space suits on Langley Research Center's Centennial float on Thursday, Dec. 1, 2016, at Langley Research Center in Hampton, VA.
Photo Credit: NASA Langley Research Center