The sea slug, Elysia chlorotica, steals millions of green-colored plastids, which are like tiny solar panels, from algae. Credit: Karen N. Pelletreau/University of Maine
A Northeast sea slug sucks raw materials from algae to provide its lifetime supply of solar-powered energy, according to a study by Rutgers University-New Brunswick, USA.
‘It’s a remarkable feat because it’s highly unusual for an animal to behave like a plant and survive solely on photosynthesis,’ said Debashish Bhattacharya, senior author of the study and professor in the Department of Biochemistry and Microbiology at Rutgers-New Brunswick. ‘The broader implication is in the field of artificial photosynthesis. That is, if we can figure out how the slug maintains stolen, isolated plastids to fix carbon without the plant nucleus, then maybe we can also harness isolated plastids for eternity as green machines to create bioproducts or energy. The existing paradigm is that to make green energy, we need the plant or alga to run the photosynthetic organelle, but the slug shows us that this does not have to be the case.’
The sea slug Elysia chlorotica, a mollusk that can grow to more than 2 inches long, has been found in the intertidal zone between Nova Scotia, Canada, and Martha’s Vineyard, Massachusetts, as well as in Florida. Juvenile sea slugs eat the nontoxic brown alga Vaucheria litorea and become photosynthetic – or solar-powered – after stealing millions of algal plastids, which are like tiny solar panels, and storing them in their gut lining, according to the study published online in the journal Molecular Biology and Evolution.
This particular alga is an ideal food source because it does not have walls between adjoining cells in its body and is essentially a long tube loaded with nuclei and plastids, Bhattacharya said. ‘When the sea slug makes a hole in the outer cell wall, it can suck out the cell contents and gather all of the algal plastids at once,’ he said.
Read the full study here: Cheong Xin Chan, Pavel Vaysberg, Dana C Price, Karen N Pelletreau, Mary E Rumpho, Debashish Bhattacharya. Active Host Response to Algal Symbionts in the Sea Slug Elysia chlorotica. Molecular Biology and Evolution, 2018; DOI: 10.1093/molbev/msy061
“It took many years of vomiting up all the filth I’d been taught about myself, and half-believed, before I was able to walk on the earth as though I had a right to be here.”
— James Baldwin, The Price of the Ticket (via quotespile)
Supergiant stars are beasts! Their life is a fight between gravity pushing in and heat pushing out. They fuse heavier and heavier elements in their core until they get to iron. They can’t fuse any more. Iron absorbs more energy than it returns, so gravity takes over. The star’s core collapses and the star dies in an explosive supernova that outshines its entire galaxy.
The heat of a supernova fuses new elements during the explosion, which are then spread out into space via the nebula remnant. Nebulae are the birthplaces of new stars and solar systems.
The iron in your blood came from one of the most powerful explosions in the universe.
It's nap time little martian
Today was Opportunity Rover’s 5,000 Martian Day! Yay! Just in case you don’t know Opportunity, here are a few little facts.
First, The opportunity Rover was launched on July 7th of 2003. It was lauched with another rover named Spirit. They landed on Mars in Janurary of 2004. Unfortunately Spirit stopped working in 2010 , but Opportunity is still alive and helping us understand Mars.
Initially Opportuinity was only supposed to be around for 90 Earth days, but instead it’s gotten tons of extensions and is still collecting data today.
Opportunity is run by a solar panel and is almost 5 feet tall. The solar panels hold enough energy for 14 hours, and the batteries help store energy for use at night. All of that helps to keep our little robot running. He currently holds the record for longest distance travelled “off-world.”
As of right now Opportunity is “hibernating” through the Martian winter and will wake up again in March (yay!) to help with more scientific discoveries.
Happy 5,000 Martian Day Opportunity! And thanks for everything you do <3
Metal Rover Model Kit
Opportunity Poster
Reconfigurable material could be used for liquid electronics and chemical synthesis, among other applications
Scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to print 3-D structures composed entirely of liquids. Using a modified 3-D printer, they injected threads of water into silicone oil – sculpting tubes made of one liquid within another liquid.
They envision their all-liquid material could be used to construct liquid electronics that power flexible, stretchable devices. The scientists also foresee chemically tuning the tubes and flowing molecules through them, leading to new ways to separate molecules or precisely deliver nanoscale building blocks to under-construction compounds.
The researchers have printed threads of water between 10 microns and 1 millimeter in diameter, and in a variety of spiraling and branching shapes up to several meters in length. What’s more, the material can conform to its surroundings and repeatedly change shape.
“It’s a new class of material that can reconfigure itself, and it has the potential to be customized into liquid reaction vessels for many uses, from chemical synthesis to ion transport to catalysis,” said Tom Russell, a visiting faculty scientist in Berkeley Lab’s Materials Sciences Division. He developed the material with Joe Forth, a postdoctoral researcher in the Materials Sciences Division, as well as other scientists from Berkeley Lab and several other institutions. They report their research March 24 in the journal Advanced Materials.
Read more.
Hunt for Huntington!
Possible Biomarker for Huntington’s Identified
A new discovery of a potential biomarker for Huntington’s disease (HD) could mean a more effective way of evaluating the effectiveness of treatments for this neurological disease. The findings may provide insight into treatments that could postpone the death of neurons in people who carry the HD gene mutation, but who do not yet show symptoms of the disease.
Roommate -> roomsister
November 28 2017
Afternoon study session at my university’s library with my astronaut friend @redplanet44 ☆
And also math is a common language for spanish and chinese people. The original esperanto :)
Cooking With Neil DeGrasse Tyson
Houston TX (SPX) Feb 28, 2018 Three members of the Expedition 54 crew aboard the International Space Station (ISS), including NASA astronauts Mark Vande Hei and Joe Acaba, returned to Earth on Tuesday after months of performing research and spacewalks in low-Earth orbit. Vande Hei, Acaba and cosmonaut Alexander Misurkin of the Russian space agency Roscosmos landed at 9:31 p.m. EST (8:31 a.m. Feb. 28 in Kazakhstan) sout Full article
Lego’s new “Women of NASA” set is now available, and the product has already risen to the top of Amazon’s list of best-selling toys.
The set of 231 plastic pieces costs about $25 and went on sale Wednesday morning. Its instant popularity is not surprising to those who have been following Lego’s laudable — and presumably profitable — trend of selling toys that are more inclusive of women.
“Women of NASA” features four mini figurines of pioneering women from the space agency: the astronauts Sally Ride and Mae Jemison, the astronomer Nancy Grace Roman, and the computer scientist Margaret Hamilton.
Continue Reading.
There’s a good chance you’ve touched something made out of the polyolefin polymer today. It’s often used in polyethylene products like plastic bags or polypropylene products like diapers.
As useful as polyolefins are in society, they continue to multiply as trash in the environment. Scientists estimate plastic bags, for example, will take centuries to degrade.
But now, researchers at Virginia Tech have synthesized a biodegradable alternative to polyolefins using a new catalyst and the polyester polymer, and this breakthrough could eventually have a profound impact on sustainability efforts.
Rong Tong, assistant professor in the Department of Chemical Engineering and affiliated faculty member of Macromolecules Innovation Institute (MII), led the team of researchers, whose findings were recently published in the journal Nature Communications.
One of the largest challenges in polymer chemistry is controlling the tacticity or the stereochemistry of the polymer. When multiplying monomer subunits into the macromolecular chain, it’s difficult for scientists to replicate a consistent arrangement of side-chain functional groups stemming off the main polymer chain. These side-chain functional groups greatly affect a polymer’s physical and chemical properties, such as melting temperature or glass-transition temperature, and regular stereochemistry leads to better properties.
Read more.