It’s International Asteroid Day!

It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!
It’s International Asteroid Day!

It’s International Asteroid Day!

(Large Asteroid Impact Simulation)

Asteroid Day (also known as International Asteroid Day) is an annual global event that aims to raise awareness about asteroids and what can be done to protect the Earth, its families, communities, and future generations. Asteroid Day is held on the anniversary of the June 30, 1908 Siberian Tunguska event, the most harmful known asteroid-related event on Earth in recent history.

Learn more here 

Animation

More Posts from Ocrim1967 and Others

6 years ago
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter
Swirls Of Jupiter

Swirls of Jupiter

Jupiter is a very stormy, turbulent, violent planet. The planet completes a day (or one complete rotation) within roughly 10 hours, which creates massive winds, producing these swirls, and violent storms. The fast rotation coupled with the fact that the planet is nothing but gas greatly multiplies the Coriolis effect. Earth too has a Coriolis effect, this creates the characteristic hurricane shapes and also contributes to the fact that storms will spin the opposite direction in different hemispheres. Luckily, our rotation is slower - our storms are less frequent and less violent than they would be if our days were shorter.

The above images come from the recent Juno mission by NASA.

6 years ago

Puppies Make Me Happy

Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
Puppies Make Me Happy
6 years ago
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration
FOR SALE: Mobile &Web Illustration

FOR SALE: Mobile &Web Illustration

5 years ago

5 Ways the Moon Landing Changed Life on Earth

When Neil Armstrong took his first steps on the Moon 50 years ago, he famously said “that’s one small step for a man, one giant leap for mankind.” He was referring to the historic milestone of exploring beyond our own planet — but there’s also another way to think about that giant leap: the massive effort to develop technologies to safely reach, walk on the Moon and return home led to countless innovations that have improved life on Earth.

Armstrong took one small step on the lunar surface, but the Moon landing led to a giant leap forward in innovations for humanity.

Here are five examples of technology developed for the Apollo program that we’re still using today:

1. Food Safety Standards

As soon as we started planning to send astronauts into space, we faced the problem of what to feed them — and how to ensure the food was safe to eat. Can you imagine getting food poisoning on a spacecraft, hundreds of thousands of miles from home?

We teamed up with a familiar name in food production: the Pillsbury Company. The company soon realized that existing quality control methods were lacking. There was no way to be certain, without extensive testing that destroyed the sample, that the food was free of bacteria and toxins.

Pillsbury revamped its entire food-safety process, creating what became the Hazard Analysis and Critical Control Point system. Its aim was to prevent food safety problems from occurring, rather than catch them after the fact. They managed this by analyzing and controlling every link in the chain, from the raw materials to the processing equipment to the people handling the food.

Today, this is one of the space program’s most far-reaching spinoffs. Beyond keeping the astronaut food supply safe, the Hazard Analysis and Critical Point system has also been adopted around the world — and likely reduced the risk of bacteria and toxins in your local grocery store. 

image

2. Digital Controls for Air and Spacecraft

The Apollo spacecraft was revolutionary for many reasons. Did you know it was the first vehicle to be controlled by a digital computer? Instead of pushrods and cables that pilots manually adjusted to manipulate the spacecraft, Apollo’s computer sent signals to actuators at the flick of a switch.

Besides being physically lighter and less cumbersome, the switch to a digital control system enabled storing large quantities of data and programming maneuvers with complex software.

Before Apollo, there were no digital computers to control airplanes either. Working together with the Navy and Draper Laboratory, we adapted the Apollo digital flight computer to work on airplanes. Today, whatever airline you might be flying, the pilot is controlling it digitally, based on the technology first developed for the flight to the Moon.

image

3. Earthquake-ready Shock Absorbers

A shock absorber descended from Apollo-era dampers and computers saves lives by stabilizing buildings during earthquakes.

Apollo’s Saturn V rockets had to stay connected to the fueling tubes on the launchpad up to the very last second. That presented a challenge: how to safely move those tubes out of the way once liftoff began. Given how fast they were moving, how could we ensure they wouldn’t bounce back and smash into the vehicle?

We contracted with Taylor Devices, Inc. to develop dampers to cushion the shock, forcing the company to push conventional shock isolation technology to the limit.

Shortly after, we went back to the company for a hydraulics-based high-speed computer. For that challenge, the company came up with fluidic dampers—filled with compressible fluid—that worked even better. We later applied the same technology on the Space Shuttle’s launchpad.

The company has since adapted these fluidic dampers for buildings and bridges to help them survive earthquakes. Today, they are successfully protecting structures in some of the most quake-prone areas of the world, including Tokyo, San Francisco and Taiwan.

image

4. Insulation for Space

We’ve all seen runners draped in silvery “space blankets” at the end of marathons, but did you know the material, called radiant barrier insulation, was actually created for space?

Temperatures outside of Earth’s atmosphere can fluctuate widely, from hundreds of degrees below to hundreds above zero. To better protect our astronauts, during the Apollo program we invented a new kind of effective, lightweight insulation.

We developed a method of coating mylar with a thin layer of vaporized metal particles. The resulting material had the look and weight of thin cellophane packaging, but was extremely reflective—and pound-for-pound, better than anything else available.

Today the material is still used to protect astronauts, as well as sensitive electronics, in nearly all of our missions. But it has also found countless uses on the ground, from space blankets for athletes to energy-saving insulation for buildings. It also protects essential components of MRI machines used in medicine and much, much more.

image

Image courtesy of the U.S. Marines

5. Healthcare Monitors

Patients in hospitals are hooked up to sensors that send important health data to the nurse’s station and beyond — which means when an alarm goes off, the right people come running to help.

This technology saves lives every day. But before it reached the ICU, it was invented for something even more extraordinary: sending health data from space down to Earth.

When the Apollo astronauts flew to the Moon, they were hooked up to a system of sensors that sent real-time information on their blood pressure, body temperature, heart rate and more to a team on the ground.

The system was developed for us by Spacelabs Healthcare, which quickly adapted it for hospital monitoring. The company now has telemetric monitoring equipment in nearly every hospital around the world, and it is expanding further, so at-risk patients and their doctors can keep track of their health even outside the hospital.

image

Only a few people have ever walked on the Moon, but the benefits of the Apollo program for the rest of us continue to ripple widely.

In the years since, we have continued to create innovations that have saved lives, helped the environment, and advanced all kinds of technology.

Now we’re going forward to the Moon with the Artemis program and on to Mars — and building ever more cutting-edge technologies to get us there. As with the many spinoffs from the Apollo era, these innovations will transform our lives for generations to come.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

8 years ago

3 Ways To Eliminate eLearning Friction With Mobile Learning And Microlearning

3 Ways To Eliminate ELearning Friction With Mobile Learning And Microlearning

“In a world that grows increasingly more mobile, it’s important to embrace mobile technology and microlearning to eliminate eLearning friction caused by distracted learners and a poor learning experience.”

5 years ago
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?
What Makes Something A Planet, According To An Astrophysicist?

What Makes Something A Planet, According To An Astrophysicist?

“A dolphin may look like a fish, but it’s really a mammal. Similarly, the composition of an object is not the only factor in classifying it: its evolutionary history is inextricably related to its properties. Scientists will likely continue to argue over how to best classify all of these worlds, but it’s not just astronomers and planetary scientists who have a stake in this. In the quest to make organizational sense of the Universe, we have to confront it with the full suite of our knowledge.

Although many will disagree, moons, asteroids, Kuiper belt and Oort cloud objects are fascinating objects just as worthy of study as modern-day planets are. They may even be better candidates for life than many of the true planets are. But each object’s properties are inextricably related to the entirety of its formation history. When we try to classify the full suite of what we’re finding, we must not be misled by appearances alone.”

You’ve heard about the IAU’s definition, where in order to be a planet, you must pull yourself into hydrostatic equilibrium, orbit the Sun and nothing else, and gravitationally clear your orbit. You’ve also heard about the controversial new definition from geophysical/planetary science arguments, that planets should be based on their ability to pull themselves into a spheroidal shape alone.

Well, what about a third way: defining planets (and a whole classification scheme) based on astrophysical concerns alone? It’s time to start thinking about it!

7 years ago
Gif By Satiricon
Gif By Satiricon

Gif by Satiricon

6 years ago

All cats are beautiful 🐱❤️

All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
6 years ago

Far from Westeros, a Three-Eyed Raven Helps NASA Find Its Way

Perched on the outside of the International Space Station is Raven—a technology-filled module that helps NASA develop a relative navigation capability, which is essentially autopilot for spacecraft. Raven has been testing technologies to enable autonomous rendezvous in space, which means the ability to approach things in space without human involvement, even from the ground.

image

Developed by the Satellite Servicing Projects Division (SSPD), our three-eyed Raven has visible, infrared, and Lidar sensors and uses those “eyes” to image and track visiting spacecraft as they come and go from the space station. Although Raven is all-seeing, it only sees all in black and white. Color images do not offer an advantage in the case of Raven and Restore-L, which also utilize infrared and Lidar sensors.

The data from Raven’s sensors is sent to its processor, which autonomously sends commands that swivel Raven on its gimbal, or pointing system. When Raven turns using this system, it is able to track a vehicle. While these maneuvers take place, NASA operators evaluate the movements and make adjustments to perfect the relative navigation system technologies. 

Far From Westeros, A Three-Eyed Raven Helps NASA Find Its Way

A few days ago, Raven completed its 21st observation of a spacecraft when it captured images of Northrop Grumman’s Cygnus vehicle delivering science investigations and supplies as part of its 11th commercial resupply services mission, including another SSPD payload called the Robotic External Leak Locator.

image

And just last month, Raven celebrated its two-year anniversary in space, marking the occasion with an observation of SpaceX’s Crew Dragon during the Demo-1 mission.

image

What is this—a spacecraft for ants??

While this shot of Dragon isn’t terribly impressive because of where the spacecraft docked on station, Raven has captured some truly great images when given the right viewing conditions. 

From SpaceX Dragon resupply mission observations…

image

…to Cygnus supply vehicles.

image

Raven has observed six unique types of spacecraft. 

It has also conducted a few observations not involving spacecraft, including the time it captured Hurricane Irma…

image

…or the time it captured station’s Dextre arm removing the Robotic Refueling Mission 3 payload, another mission developed by SSPD, from the Dragon spacecraft that delivered it to the orbiting laboratory.

image
image

Thus far, Raven has had a great, productive life aboard the station, but its work isn’t done yet! Whether it’s for Restore-L, which will robotically refuel a satellite, or getting humans to the Moon or Mars, the technologies Raven is demonstrating for a relative navigation system will support future NASA missions for decades to come.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

  • ytriplandvasti
    ytriplandvasti liked this · 1 year ago
  • myromeothings
    myromeothings liked this · 2 years ago
  • shadow269
    shadow269 liked this · 3 years ago
  • sarmorgue
    sarmorgue liked this · 3 years ago
  • unfocused-creative
    unfocused-creative reblogged this · 4 years ago
  • ettorestyle
    ettorestyle liked this · 4 years ago
  • tensegrityy
    tensegrityy reblogged this · 4 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags