Solidification Of Liquid Gallium 

Solidification Of Liquid Gallium 
Solidification Of Liquid Gallium 
Solidification Of Liquid Gallium 
Solidification Of Liquid Gallium 

Solidification of liquid Gallium 

Gallium is a chemical element with symbol Ga and atomic number 31. Gallium is a soft, silvery metal, and elemental gallium is a brittle solid at low temperatures, and melts at 29.76 °C (85.57 °F) (slightly above room temperature). Elemental gallium is not found in nature, but it is easily obtained by smelting.

Gallium metal expands by 3.1% when it solidifies, and therefore storage in either glass or metal containers are avoided, due to the possibility of container rupture with freezing. Gallium shares the higher-density liquid state with only a few materials, like water, silicon,germanium, bismuth, and plutonium.

Giffed by: rudescience  From: This video

Tags

More Posts from Contradictiontonature and Others

8 years ago
Original Illustrations From The 1851 Edition Of The Iconographic Encyclopedia Of Science, Literature
Original Illustrations From The 1851 Edition Of The Iconographic Encyclopedia Of Science, Literature

Original illustrations from the 1851 edition of the Iconographic Encyclopedia of Science, Literature and Art by J.G. Heck.


Tags
8 years ago
(Image Caption: The Brain Of A Fruit Fly Contains Many Different Regions Responsible For Processing Sight,

(Image caption: The brain of a fruit fly contains many different regions responsible for processing sight, smell and taste in addition to regions for controlling movement. This image shows the results of a new method which automatically identifies these brain regions. Each color represents a different brain region. The authors used this method to discover specific areas involved in processing of visual information in the fly. The technique could also be used to refine our understanding of vertebrate brains)

Identifying Brain Regions Automatically

Using the example of the fruit fly, a team of biologists led by Prof. Dr. Andrew Straw has identified patterns in the genetic activity of brain cells and taken them as a basis for drawing conclusions about the structure of the brain. The research, published in Current Biology, was conducted at the University of Freiburg and at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria.

The newly developed method focuses on enhancers, DNA segments responsible for enhancing transcription of RNA at specific locations and developmental times in an organism. The research started with a database of three-dimensional images showing individual enhancer activity. The team used an automatic pattern finding algorithm to identify genetic activity patterns shared across the images. They noticed that, in some cases, these patterns seemed to correspond with specific brain regions. To demonstrate the functionality of their method, the biologists began by applying it to regions of the fruit fly brain whose anatomy is already well known – namely, those responsible for the sense of smell. The activity patterns of the enhancers traced the already familiar anatomy of these regions.

Then the biologists used the new method to study brain regions responsible for vision. These experiments led to new insights into the anatomy of these areas: In addition to eleven already known regions, the activity patterns of the enhancers revealed 14 new regions, each of which presumably serves a different function for the fruit fly’s sense of sight. The researchers now aim to conduct further studies to determine which regions are responsible for which functions.

Andrew Straw has served since January 2016 as professor of behavioral neurobiology and animal physiology at the University of Freiburg’s Faculty of Biology and is a member of the Bernstein Center Freiburg (BCF). Before their move to Freiburg, he and his research assistants Karin Panser and Dr. Laszlo Tirian worked at the Research Institute of Molecular Pathology in Vienna in collaboration with Dr. Florian Schulze, Virtual Reality and Visualization Research Center GmbH (VRVis). The goal of Straw’s research is to achieve a better understanding of the structure and function of the brain. He hopes this basic research will ultimately help in the design of therapies for patients suffering from neurological diseases affecting specific regions of the brain.

Results and visualizations: https://strawlab.org/braincode


Tags
8 years ago
Got A Chemistry-themed Watch For Christmas - Good For Checking The Time Periodically 😃

Got a chemistry-themed watch for Christmas - good for checking the time periodically 😃


Tags
9 years ago
This new drug is as strong as morphine, but without the side effects
Incredible pain relief – without the addiction.

Scientists have developed a new drug that could be a safer alternative to morphine for medical use. The researchers found that engineered variants of endomorphin, a naturally occurring chemical in the body, are as strong as morphine when it comes to killing pain.

On top of that, the medication doesn’t produce any of the unwanted side effects that come with opium-based drugs – such as being extremely addictive. At this point, the findings only relate to tests in rats, but it’s a promising start to what could be a powerful and less problematic painkiller.

Opioid pain medications are commonly used to treat severe and chronic pain, but in addition to their habit-forming qualities, patients also build up a tolerance to them over time. Hand in hand with their addictiveness, this can makes higher doses – and overdoses in drug abuse situations – dangerous. Overdoses can cause motor impairment and potentially fatal respiratory depression, resulting in thousands of deaths in the US every year.


Tags
8 years ago
Neural Pathways By Alexey Kashpersky
Neural Pathways By Alexey Kashpersky
Neural Pathways By Alexey Kashpersky
Neural Pathways By Alexey Kashpersky
Neural Pathways By Alexey Kashpersky
Neural Pathways By Alexey Kashpersky

Neural Pathways by Alexey Kashpersky


Tags
8 years ago
Popcorn’s Explosive Pop Looks Pretty Cool In High-speed Video, But Just Watching It With A Regular

Popcorn’s explosive pop looks pretty cool in high-speed video, but just watching it with a regular camera doesn’t show everything that’s going on. If we take a look at it through schlieren optics, the kernel’s pop looks even more extraordinary:

image

The schlieren technique reveals density differences in the gases around the corn–effectively allowing us to see what is invisible to the naked eye. The popcorn kernel acts like a pressure vessel until the expansion of steam inside causes its shell to rupture. The first hints of escaping steam send droplets of oil shooting upward. The kernel may hop as steam pours out the rupture point, causing the turbulent billowing seen in the animation above. As the heat causes legs of starch to expand out of the kernel, they can push off the ground and propel the popcorn higher. As for the eponymous popping sound, that is the result of escaping water vapor, not the actual rupture or rebound of the kernel! See more of the invisible world surrounding a popping kernel in the video below. (Image credits: Warped Perception, source; Bell Labs Ireland, source; WP video via Gizmodo; BLI video submitted by Kevin)


Tags
8 years ago
Plantibodies And Plant-Derived Edible Vaccines

Plantibodies and Plant-Derived Edible Vaccines

Throughout history, humans have used plants in the treatment of disease. This includes more traditional methods involving direct consumption with minimal preparation involved and the extraction of compounds for use in modern pharmaceuticals. One of the more recent methods of using plants in medicine involves the synthesis and application of plantibodies and plant produced antigens. These are recombinant antibodies and antigens respectively, which have been produced by a genetically modified plant (1, 2).        

Antibodies are a diverse set of proteins which serve the purpose of aiding the body in eliminating foreign pathogens. They are secreted by effector B lymphocytes which are a type of white blood cell that circulate throughout the body. An antigen is a molecule or a component of a molecule, such as a protein or carbohydrate, which can stimulate an immune response. The human body is capable of producing around 1012  different types of antibodies, each of which can bind to a specific antigen or a small group of related motifs (3). When an antibody encounters the antigen of a foreign pathogen to which it has high affinity, it binds to it which can disable it or alert the immune system for its destruction (4).

image

Figure 1: Each type of antibody has the ability to bind to a specific antigen or group of antigens with high affinity.

Plants do not normally produce antibodies and thus must be genetically modified to produce plantibodies as well as foreign protein antigens. Plantibodies produced in this manner function the same way as the antibodies native to the human body (1). The main ways to do this are to stably integrate foreign DNA into a host cell and place it into a plant embryo resulting in a permanent change of the nuclear genome, or to induce transient gene expression of the specified protein (5). In both cases, the genetic material introduced to the plant codes for the protein of choice. Several of the methods used to induce permanent transgene expression include agrobacterium-mediated transformation, particle bombardment using a gene gun, or the transformation of organelles such as chloroplasts. Transient transgene expression can be done using plant viruses as viral vectors or agroinfiltration (2). Once the genetic material has been inserted, the specified protein is produced via the plant endomembrane and secretory systems, after which it can be recovered through purification of the plant tissue to be used for injection (1). The production of these proteins can also be directed to specific organs of the plant such as the seeds using targeting signals (2). Stable integration techniques are generally used for more large scale production and when the gene in question has a high level of expression, while transient techniques are used to produce a greater yield in the short term (5).

image

Figure 2: A gene gun being used to introduce genetic material into the leaves of a plant.

Now how can plantibodies and plant produced antigens help us as humans? The primary purpose of producing plantibodies is for the treatment of disease via immunotherapy. Immunotherapy is a method of treatment in which one’s immune response to a particular disease is enhanced. Specific plantibodies can be produced in order to target a particular disease and then be applied to patients via injection as a means of treatment (6). Doing so provides a boost to the number of antibodies against the targeted disease in the patient’s body which helps to enhance their immune system response against it. An example of this is CaroRx, the first clinically tested plantibody which has the ability to bind to Streptococcus mutans. CaroRx has been shown to be effective in the treatment of tooth decay caused by this species of bacteria (1). More recently, a plantibody known as ZMapp has shown potential in the treatment of Ebola. A study by Qiu et al showed that when administered up to 5 days after the onset of the disease, 100% of rhesus macaques that were administered the drug were shown to have recovered from its effects while all of the control group animals perished as a result of the disease (7). In addition, it has been experimentally administered to some humans who later recovered from the disease, although its role in their recovery was not fully ascertained (8).

Plant produced antigens on the other hand can be used to produce oral vaccines (9). Vaccines are typically biological mixtures containing a weakened pathogen and its antigens. Injection of this results in priming of the body’s adaptive immune system against the particular pathogen so that it can more easily recognize and respond to the threat in the future (4). By producing the antigens of targeted pathogens in plants through transgenic expression, edible vaccines can be created if the plant used is safe to eat. Tobacco, potato, and tomato plants have typically been used in past attempts to create them, showing success in both animal studies and a number of human trials. The advantages of using an oral vaccine include ease of administration and lower costs since specialised personel are not required for administration (9). In addition, oral vaccines are more effective in providing immunity against pathogens at mucosal surfaces as they can be directly applied to the gastrointestinal tract (1). The primary issue with the usage of oral vaccines is that protein antigens must avoid degradation in the stomach and intestines before they can reach the targeted sites in the body. Several solutions to this dilemma include using other biological structures such as liposomes and proteasomes as a means of delivery. This helps to prevent the proteins from being degraded by digestive enzymes and the acidic environment of the stomach before they can reach their destination (1, 9).

image

Figure 3: An overview of one method of producing an edible vaccine using a potato plant. A gene coding for the protein of a human pathogen is used in agrobacterium-mediated transformation to produce a transgenic potato plant. The potatoes from this plant can then serve as an edible vaccine against pathogen from which the protein originated.

There are a number of advantages to using these plant based pharmaceuticals. First of all, they can be produced on a large scale at a relatively low cost through agriculture and are convenient for long-term storage due to the resiliency and size of plant seeds (5). There is also a low risk of contamination by mammalian viruses, blood borne pathogens, and oncogenes which can remove the need for expensive removal steps (1). In addition, purification steps can be skipped if the plants used are edible and ethical problems that come with animal production can be avoided (5). The disadvantages include the potential for allergic reactions to plant antigens and contamination by pesticides and herbicides. There is also the possibility of outcrossing of transgenic pollen to weeds or related crops which would lead to non-target crops also expressing the pharmaceutical.This could lead to public concern along with the potential that other species which ingest these plants may be negatively affected (9).  While plantibodies and plant produced antigens have not yet been extensively tested in clinical trials, going forward they represent a new treatment option with great promise.

References

1. Jain P, Pandey P, Jain D, Dwivedi P. Plantibody: An overview. Asian journal of Pharmacy and Life Science. 2011 Jan;1(1):87-94.

2. Stoger E, Sack M, Fischer R, Christou P. Plantibodies: applications, advantages and bottlenecks. Current Opinion in Biotechnology. 2002 Apr 1;13(2):161-166.

3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th Edition. New York: Garland Science; 2002.

4. Parham P. The immune system. 4th Edition. New York: Garland Science; 2014.

5. Ferrante E, Simpson D. A review of the progression of transgenic plants used to produce plantibodies for human usage. J. Young Invest. 2001;4:1-0.

6. Smith MD. Antibody production in plants. Biotechnology advances. 1996 Dec 31;14(3):267-81.

7. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014 Aug 29.

8. Sneed A. Know the Jargon. Scientific american. 2014 Dec 1;311(6):24-24.

9. Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in plant science. 2001 May 1;6(5):219-26.


Tags
8 years ago
This Year’s Halloween Special Wraps Up The Chemistry Behind Making A Mummy: Http://wp.me/p4aPLT-26m

This year’s Halloween special wraps up the chemistry behind making a mummy: http://wp.me/p4aPLT-26m


Tags
8 years ago
If You Dropped A Water Balloon On A Bed Of Nails, You’d Expect It To Burst Spectacularly. And You’d

If you dropped a water balloon on a bed of nails, you’d expect it to burst spectacularly. And you’d be right – some of the time. Under the right conditions, though, you’d see what a high-speed camera caught in the animation above: a pancake-shaped bounce with nary a leak. Physically, this is a scaled-up version of what happens to a water droplet when it hits a superhydrophobic surface. 

Water repellent superhydrophobic surfaces are covered in microscale roughness, much like a bed of tiny nails. When the balloon (or droplet) hits, it deforms into the gaps between posts. In the case of the water balloon, its rubbery exterior pulls back against that deformation. (For the droplet, the same effect is provided by surface tension.) That tension pulls the deformed parts of the balloon back up, causing the whole balloon to rebound off the nails in a pancake-like shape. For more, check out this video on the student balloon project or the original water droplet research. (Image credits: T. Hecksher et al., Y. Liu et al.; via The New York Times; submitted by Justin B.)

image

Tags
Loading...
End of content
No more pages to load
  • nihi1ista
    nihi1ista liked this · 6 years ago
  • bluecherryfanta
    bluecherryfanta liked this · 6 years ago
  • pinneapplecrown
    pinneapplecrown reblogged this · 6 years ago
  • pinneapplecrown
    pinneapplecrown liked this · 6 years ago
  • sensoryserenity
    sensoryserenity reblogged this · 6 years ago
  • meticulousmaker
    meticulousmaker liked this · 6 years ago
  • aaaabovethismadnesss
    aaaabovethismadnesss liked this · 7 years ago
  • 3battements
    3battements reblogged this · 7 years ago
  • merelymyriad
    merelymyriad reblogged this · 7 years ago
  • sikomoro
    sikomoro liked this · 7 years ago
  • wordcubed
    wordcubed liked this · 7 years ago
  • koooolaaaaa
    koooolaaaaa liked this · 7 years ago
  • iceduke
    iceduke liked this · 7 years ago
  • docholodeck
    docholodeck liked this · 8 years ago
  • docholodeck
    docholodeck reblogged this · 8 years ago
  • deadheadingcrew
    deadheadingcrew liked this · 8 years ago
  • mcwolfy
    mcwolfy reblogged this · 8 years ago
  • lencse
    lencse liked this · 8 years ago
  • mcwolfy
    mcwolfy liked this · 8 years ago
  • effortlesslyemma
    effortlesslyemma reblogged this · 8 years ago
  • mockingbirdwrites
    mockingbirdwrites reblogged this · 8 years ago
  • miclnightcity
    miclnightcity liked this · 8 years ago
  • mockingbirdwrites
    mockingbirdwrites liked this · 8 years ago
  • hcnsohee
    hcnsohee reblogged this · 8 years ago
  • the-nomadic-writer
    the-nomadic-writer liked this · 8 years ago
  • koroktea
    koroktea reblogged this · 8 years ago
  • bix-beans
    bix-beans liked this · 8 years ago
  • blue-elysium
    blue-elysium reblogged this · 8 years ago
  • thetyeee
    thetyeee reblogged this · 8 years ago
  • triplealovely
    triplealovely liked this · 8 years ago
  • feline-fire
    feline-fire liked this · 8 years ago
  • thecaduceusclay
    thecaduceusclay reblogged this · 8 years ago
  • s-parkz
    s-parkz liked this · 8 years ago
  • extremelycommonname
    extremelycommonname reblogged this · 8 years ago
  • tntkaboomsky
    tntkaboomsky liked this · 8 years ago
  • turtledoggy94
    turtledoggy94 reblogged this · 8 years ago
  • mewmoonstar
    mewmoonstar reblogged this · 8 years ago
  • mewmoonstar
    mewmoonstar liked this · 8 years ago
  • fluorishandblotts
    fluorishandblotts reblogged this · 8 years ago
  • fluorishandblotts
    fluorishandblotts liked this · 8 years ago
  • badbint
    badbint reblogged this · 8 years ago
  • badbint
    badbint liked this · 8 years ago
contradictiontonature - sapere aude
sapere aude

A pharmacist and a little science sideblog. "Knowledge belongs to humanity, and is the torch which illuminates the world." - Louis Pasteur

215 posts

Explore Tumblr Blog
Search Through Tumblr Tags