Scientists Have Developed A New Drug That Could Be A Safer Alternative To Morphine For Medical Use. The

This new drug is as strong as morphine, but without the side effects
Incredible pain relief – without the addiction.

Scientists have developed a new drug that could be a safer alternative to morphine for medical use. The researchers found that engineered variants of endomorphin, a naturally occurring chemical in the body, are as strong as morphine when it comes to killing pain.

On top of that, the medication doesn’t produce any of the unwanted side effects that come with opium-based drugs – such as being extremely addictive. At this point, the findings only relate to tests in rats, but it’s a promising start to what could be a powerful and less problematic painkiller.

Opioid pain medications are commonly used to treat severe and chronic pain, but in addition to their habit-forming qualities, patients also build up a tolerance to them over time. Hand in hand with their addictiveness, this can makes higher doses – and overdoses in drug abuse situations – dangerous. Overdoses can cause motor impairment and potentially fatal respiratory depression, resulting in thousands of deaths in the US every year.

More Posts from Contradictiontonature and Others

7 years ago

Estrogen Alters Memory Circuit Function in Women with Gene Variant

Fluctuations in estrogen can trigger atypical functioning in a key brain memory circuit in women with a common version of a gene, NIMH scientists have discovered. Brain scans revealed altered circuit activity linked to changes in the sex hormone in women with the gene variant while they performed a working memory task.

Estrogen Alters Memory Circuit Function In Women With Gene Variant

(Image caption: Both PET scans (left) and fMRI scans (right) showed the same atypical activation (yellow) in the brain’s memory hub, or hippocampus, in response to estrogen in women performing a working memory task – if they carried a uniquely human version of the BDNF gene. Activity in this area is typically suppressed during working memory. Picture shows PET and fMRI data superimposed over anatomical MRI image)

The findings may help to explain individual differences in menstrual cycle and reproductive-related mental disorders linked to fluctuations in the hormone. They may also shed light on mechanisms underlying sex-related differences in onset, severity, and course of mood and anxiety disorders and schizophrenia. The gene-by-hormone interaction’s effect on circuit function was found only with one of two versions of the gene that occurs in about a fourth of white women.

Drs. Karen Berman, Peter Schmidt, Shau-Ming Wei, and colleagues, of the NIMH Intramural Research Program, report on this first such demonstration in women April 18, 2017 in the journal Molecular Psychiatry.

Prior to the study, there was little evidence from research on the human brain that might account for individual differences in cognitive and behavioral effects of sex hormones. For example, why do some women develop postpartum depression and others do not – in response to the same hormone changes? Why do some women report that estrogen replacement improved their memory, whereas large studies of postmenopausal estrogen therapy show no overall improvement in memory performance?

Evidence from humans has also been lacking for the neural basis of stark sex differences in prevalence and course of mental disorders that are likely related to sex hormones. For example, why are there higher rates of mood disorders in females and higher rates of ADHD in males – or later onset of schizophrenia in females?

In seeking answers to these questions, the researchers focused on working memory, a well-researched brain function often disturbed in many of these disorders. It was known that working memory is mediated by a circuit from the brain’s executive hub, the prefrontal cortex, to its memory hub, the hippocampus. Notably, hippocampus activity is typically suppressed during working memory processing.

Following-up on a clue from experiments in mice, the NIMH team hypothesized that estrogen tweaks circuit function by interacting with a uniquely human version of the gene that codes for brain derived neurotrophic factor (BDNF), a pivotal chemical messenger operating in this circuit. To find out, the researchers experimentally manipulated estrogen levels in healthy women with one or the other version of the BDNF gene over a period of months. Researchers periodically scanned the women’s brain activity while they performed a working memory task to see any effects of the gene-hormone interaction on circuit function.

The researchers first scanned 39 women using PET (positron emission tomography) and later confirmed the results in 27 women using fMRI (functional magnetic resonance imaging). Both pegged atypical activity in the hippocampus to the interaction. Turning up the same findings using two types of neuroimaging strengthens the case for the accuracy of their observations, say the researchers. Such gene-hormone interactions affecting thinking and behavior are consistent with findings from animal studies and are suspect mechanisms conferring risk for mental illness, they add.


Tags
8 years ago
A Brand-New Human Organ Has Been Identified
Your body now has an extra organ — meet the mesentery.

A mighty membrane that twists and turns through the gut is starting the new year with a new classification: the structure, called the mesentery, has been upgraded to an organ.

Scientists have known about the structure, which connects a person’s small and large intestines to the abdominal wall and anchors them in place, according to the Mayo Clinic. However, until now, it was thought of as a number of distinct membranes by most scientists. Interestingly, in one of its earliest descriptions, none other than Leonardo da Vinci identified the membranes as a single structure, according to a recent review.


Tags
7 years ago
NASA’s Juno Spacecraft Completes Flyby Over Jupiter’s Great Red Spot
NASA’s Juno Spacecraft Completes Flyby Over Jupiter’s Great Red Spot
NASA’s Juno Spacecraft Completes Flyby Over Jupiter’s Great Red Spot

NASA’s Juno Spacecraft Completes Flyby over Jupiter’s Great Red Spot

NASA’s Juno mission completed a close flyby of Jupiter and its Great Red Spot on July 10, during its sixth science orbit.

All of Juno’s science instruments and the spacecraft’s JunoCam were operating during the flyby, collecting data that are now being returned to Earth. Juno’s next close flyby of Jupiter will occur on Sept. 1.

Raw images from the spacecraft’s latest flyby will be posted in coming days.

“For generations people from all over the world and all walks of life have marveled over the Great Red Spot,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute in San Antonio. “Now we are finally going to see what this storm looks like up close and personal.”

The Great Red Spot is a 10,000-mile-wide (16,000-kilometer-wide) storm that has been monitored since 1830 and has possibly existed for more than 350 years. In modern times, the Great Red Spot has appeared to be shrinking.

Juno reached perijove (the point at which an orbit comes closest to Jupiter’s center) on July 10 at 6:55 p.m. PDT (9:55 p.m. EDT). At the time of perijove, Juno was about 2,200 miles (3,500 kilometers) above the planet’s cloud tops. Eleven minutes and 33 seconds later, Juno had covered another 24,713 miles (39,771 kilometers), and was passing directly above the coiling crimson cloud tops of the Great Red Spot.

The spacecraft passed about 5,600 miles (9,000 kilometers) above the clouds of this iconic feature.

On July 4 at 7:30 p.m. PDT (10:30 p.m. EDT), Juno logged exactly one year in Jupiter orbit, marking 71 million miles (114.5 million kilometers) of travel around the giant planet.

Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida. During its mission of exploration, Juno soars low over the planet’s cloud tops – as close as about 2,100 miles (3,400 kilometers). During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

Early science results from NASA’s Juno mission portray the largest planet in our solar system as a turbulent world, with an intriguingly complex interior structure, energetic polar aurora, and huge polar cyclones.

JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute. The Juno mission is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate.

Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is a division of Caltech in Pasadena


Tags
8 years ago
It’s Time For #TrilobiteTuesday! During Their Lengthy Trek Through Time, Trilobites Existed In An Almost

It’s time for #TrilobiteTuesday! During their lengthy trek through time, trilobites existed in an almost dizzying array of sizes and shapes. Perhaps no other creature in the entire history of the earth has ever displayed the diversity of design shown by these singularly distinctive arthropods. But at their heart (and yes, trilobites apparently did possess primitive but effective cardio-respiratory systems), they were all remarkably similar. Named not, as is generally surmised, for their three main body segments – cephalon (head), thorax (body) and pygidium (tail) – but rather for the three lobes that longitudinally divided their dorsal exoskeleton. Whether they were Cambrian Olenellids – such as this Olenellus romensis from Alabama – or Devonian Phacopids, most trilobites presented a fundamentally analogous body design. Such characteristics as occipital lobes, anterior margins and facial sutures (which allowed early trilobites to shed their molting shell), were shared by the majority of trilobite species, as were such exotic-sounding features as axial rings, articulating facets and pleural spines. 


Tags
8 years ago

Antibiotic Resistance Will Soon Hit the Tipping Point, Unless We Act

Antibiotic Resistance Will Soon Hit the Tipping Point, Unless We Act

Antibiotic-resistant superbugs are enough of a severe, genuine threat to global populations that the UN has placed the issue on par with the spread of Ebola and HIV. The livestock industry is a major factor contributing to the rapid proliferation of these superbugs, swift action is required.


Tags
8 years ago

Toxic Alzheimer’s Protein Spreads Through Brain Via Extracellular Space

A toxic Alzheimer’s protein can spread through the brain—jumping from one neuron to another—via the extracellular space that surrounds the brain’s neurons, suggests new research from Karen Duff, PhD, and colleagues at Columbia University Medical Center.

Toxic Alzheimer’s Protein Spreads Through Brain Via Extracellular Space

(Image caption: Orange indicates where tau protein has traveled from one neuron to another. Credit: Laboratory of Karen Duff, PhD)

The spread of the protein, called tau, may explain why only one area of the brain is affected in the early stages of Alzheimer’s but multiple areas are affected in later stages of the disease.

“By learning how tau spreads, we may be able to stop it from jumping from neuron to neuron,” says Dr. Duff. “This would prevent the disease from spreading to other regions of the brain, which is associated with more severe dementia.”

The idea the Alzheimer’s can spread through the brain first gained support a few years ago when Duff and other Columbia researchers discovered that tau spread from neuron to neuron through the brains of mice.

In the new study, lead scientist Jessica Wu, PhD, of the Taub Institute discovered how tau travels by tracking the movement of tau from one neuron to another. Tau, she found, can be released by neurons into extracellular space, where it can be picked up by other neurons. Because tau can travel long distances within the neuron before its release, it can seed other regions of the brain.

“This finding has important clinical implications,” explains Dr. Duff. “When tau is released into the extracellular space, it would be much easier to target the protein with therapeutic agents, such as antibodies, than if it had remained in the neuron.”

A second interesting feature of the study is the observation that the spread of tau accelerates when the neurons are more active. Two team members, Abid Hussaini, PhD, and Gustavo Rodriguez, PhD, showed that stimulating the activity of neurons accelerated the spread of tau through the brain of mice and led to more neurodegeneration.

Although more work is needed to examine whether those findings are relevant for people, “they suggest that clinical trials testing treatments that increase brain activity, such as deep brain stimulation, should be monitored carefully in people with neurodegenerative diseases,” Dr. Duff says.


Tags
6 years ago
Social Stress Leads To Changes In Gut Bacteria

Social Stress Leads To Changes In Gut Bacteria

Exposure to psychological stress in the form of social conflict alters gut bacteria in Syrian hamsters, according to a new study by Georgia State University.

It has long been said that humans have “gut feelings” about things, but how the gut might communicate those “feelings” to the brain was not known. It has been shown that gut microbiota, the complex community of microorganisms that live in the digestive tracts of humans and other animals, can send signals to the brain and vice versa.

In addition, recent data have indicated that stress can alter the gut microbiota. The most common stress experienced by humans and other animals is social stress, and this stress can trigger or worsen mental illness in humans. Researchers at Georgia State have examined whether mild social stress alters the gut microbiota in Syrian hamsters, and if so, whether this response is different in animals that “win” compared to those that “lose” in conflict situations.

Hamsters are ideal to study social stress because they rapidly form dominance hierarchies when paired with other animals. In this study, pairs of adult males were placed together and they quickly began to compete, resulting in dominant (winner) and subordinate (loser) animals that maintained this status throughout the experiment. Their gut microbes were sampled before and after the first encounter as well as after nine interactions. Sampling was also done in a control group of hamsters that were never paired and thus had no social stress. The researchers’ findings are published in the journal Behavioural Brain Research.

“We found that even a single exposure to social stress causes a change in the gut microbiota, similar to what is seen following other, much more severe physical stressors, and this change gets bigger following repeated exposures,” said Dr. Kim Huhman, Distinguished University Professor of Neuroscience at Georgia State. “Because ‘losers’ show much more stress hormone release than do ‘winners,’ we initially hypothesized that the microbial changes would be more pronounced in animals that lost than in animals that won.”

“Interestingly, we found that social stress, regardless of who won, led to similar overall changes in the microbiota, although the particular bacteria that were impacted were somewhat different in winners and losers. It might be that the impact of social stress was somewhat greater for the subordinate animals, but we can’t say that strongly.”

Another unique finding came from samples that were taken before the animals were ever paired, which were used to determine if any of the preexisting bacteria seemed to correlate with whether an animal turned out to be the winner or loser.

“It’s an intriguing finding that there were some bacteria that seemed to predict whether an animal would become a winner or a loser,” Huhman said.

“These findings suggest that bi-directional communication is occurring, with stress impacting the microbiota, and on the other hand, with some specific bacteria in turn impacting the response to stress,” said Dr. Benoit Chassaing, assistant professor in the Neuroscience Institute at Georgia State.

This is an exciting possibility that builds on evidence that gut microbiota can regulate social behavior and is being investigated by Huhman and Chassaing.


Tags
8 years ago
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain
Giant Artwork Reflects The Gorgeous Complexity Of The Human Brain

Giant Artwork Reflects The Gorgeous Complexity of The Human Brain

The new work at The Franklin Institute may be the most complex and detailed artistic depiction of the brain ever.

Your brain has approximately 86 billion neurons joined together through some 100 trillion connections, giving rise to a complex biological machine capable of pulling off amazing feats. Yet it’s difficult to truly grasp the sophistication of this interconnected web of cells.

Now, a new work of art based on actual scientific data provides a glimpse into this complexity.

The 8-by-12-foot gold panel, depicting a sagittal slice of the human brain, blends hand drawing and multiple human brain datasets from several universities. The work was created by Greg Dunn, a neuroscientist-turned-artist, and Brian Edwards, a physicist at the University of Pennsylvania, and goes on display at The Franklin Institute in Philadelphia. 

“The human brain is insanely complicated,” Dunn said. “Rather than being told that your brain has 80 billion neurons, you can see with your own eyes what the activity of 500,000 of them looks like, and that has a much greater capacity to make an emotional impact than does a factoid in a book someplace.”

To reflect the neural activity within the brain, Dunn and Edwards have developed a technique called micro-etching: They paint the neurons by making microscopic ridges on a reflective sheet in such a way that they catch and reflect light from certain angles. When the light source moves in relation to the gold panel, the image appears to be animated, as if waves of activity are sweeping through it.

First, the visual cortex at the back of the brain lights up, then light propagates to the rest of the brain, gleaming and dimming in various regions — just as neurons would signal inside a real brain when you look at a piece of art.

That’s the idea behind the name of Dunn and Edwards’ piece: “Self Reflected.” It’s basically an animated painting of your brain perceiving itself in an animated painting.

To make the artwork resemble a real brain as closely as possible, the artists used actual MRI scans and human brain maps, but the datasets were not detailed enough. “There were a lot of holes to fill in,” Dunn said. Several students working with the duo explored scientific literature to figure out what types of neurons are in a given brain region, what they look like and what they are connected to. Then the artists drew each neuron.

Dunn and Edwards then used data from DTI scans — a special type of imaging that maps bundles of white matter connecting different regions of the brain. This completed the picture, and the results were scanned into a computer. Using photolithography, the artists etched the image onto a panel covered with gold leaf.

“A lot of times in science and engineering, we take a complex object and distill it down to its bare essential components, and study that component really well” Edwards said. But when it comes to the brain, understanding one neuron is very different from understanding how billions of neurons work together and give rise to consciousness.

“Of course, we can’t explain consciousness through an art piece, but we can give a sense of the fact that it is more complicated than just a few neurons,” he added.

The artists hope their work will inspire people, even professional neuroscientists, “to take a moment and remember that our brains are absolutely insanely beautiful and they are buzzing with activity every instant of our lives,” Dunn said. “Everybody takes it for granted, but we have, at the very core of our being, the most complex machine in the entire universe.”

Image 1: A computer image of “Self Reflected,” an etching of a human brain created by artists Greg Dunn and Brian Edwards.

Image 2: A close-up of the cerebellum in the finished work.

Image 3: A close-up of the motor cortex in the finished work.

Image 4: This is what “Self Reflected” looks like when it’s illuminated with all white light.

Image 5: Pons and brainstem close up.

Image 6: Putkinje neurons - color encodes reflective position in microetching.

Image 7: Primary visual cortex in the calcarine fissure.

Image 8: Basal ganglia and connected circuitry.

Image 9: Parietal cortex.

Image 10: Cerebellum.

Credit for all Images: Greg Dunn - “Self Reflected”

Source: The Huffington Post (by Bahar Gholipour)


Tags
8 years ago
Finally Got The Pure Nile Red In Solution, Just Need To Evaporate To Get The Pure Dye.

Finally got the pure Nile Red in solution, just need to evaporate to get the pure dye.

Interesting fact: Nile Red is a solvatochromic dye. What does this mean? Solvatochromism is the ability of a chemical substance to change color due to a change in solvent polarity, so it has different color in different solvents. Also its emission and excitation wavelength both shift depending on solvent polarity, so it fluoresces with with different color depending on the solvent what it’s dissolved in. 

In this case it was dissolved in dichloromethane.


Tags
Loading...
End of content
No more pages to load
  • noroseswithoutthorns
    noroseswithoutthorns liked this · 8 years ago
  • darklydreamingashley
    darklydreamingashley liked this · 8 years ago
  • jla1126
    jla1126 reblogged this · 9 years ago
  • cleavingtolilac
    cleavingtolilac liked this · 9 years ago
  • crookshankx
    crookshankx liked this · 9 years ago
  • utot-atbp
    utot-atbp liked this · 9 years ago
  • theoreticalbotanist
    theoreticalbotanist liked this · 9 years ago
  • reaperfromtheabyss
    reaperfromtheabyss reblogged this · 9 years ago
  • bae-of-bengal
    bae-of-bengal reblogged this · 9 years ago
  • arb1904-blog
    arb1904-blog liked this · 9 years ago
  • footoxes
    footoxes liked this · 9 years ago
  • contradictiontonature
    contradictiontonature reblogged this · 9 years ago
  • iycrmm
    iycrmm reblogged this · 9 years ago
  • iycrmm
    iycrmm liked this · 9 years ago
  • madamdhistorian
    madamdhistorian reblogged this · 9 years ago
  • madamdhistorian
    madamdhistorian liked this · 9 years ago
  • caitlin--c
    caitlin--c liked this · 9 years ago
  • lizzycakesrn
    lizzycakesrn reblogged this · 9 years ago
  • lizzycakesrn
    lizzycakesrn liked this · 9 years ago
  • violsva
    violsva liked this · 9 years ago
  • amusingash
    amusingash liked this · 9 years ago
  • elusivemellifluence
    elusivemellifluence reblogged this · 9 years ago
  • caduceus3
    caduceus3 liked this · 9 years ago
  • rabaukentochter
    rabaukentochter liked this · 9 years ago
  • canihaveyoursoul
    canihaveyoursoul reblogged this · 9 years ago
  • breathingfebruary
    breathingfebruary liked this · 9 years ago
  • admiralchimpspoliticalthoughts
    admiralchimpspoliticalthoughts reblogged this · 9 years ago
  • letlovein-x
    letlovein-x liked this · 9 years ago
  • taleasoldastimetuneasoldassong
    taleasoldastimetuneasoldassong liked this · 9 years ago
  • christine0710
    christine0710 reblogged this · 9 years ago
  • generalllamaparadise
    generalllamaparadise liked this · 9 years ago
  • chronicallylearning
    chronicallylearning liked this · 9 years ago
  • malisaa
    malisaa liked this · 9 years ago
  • jaynele
    jaynele reblogged this · 9 years ago
  • animalpube
    animalpube reblogged this · 9 years ago
contradictiontonature - sapere aude
sapere aude

A pharmacist and a little science sideblog. "Knowledge belongs to humanity, and is the torch which illuminates the world." - Louis Pasteur

215 posts

Explore Tumblr Blog
Search Through Tumblr Tags