Que O último Período Seja De Grandes Realizações!

Que o último período seja de grandes realizações!

More Posts from Carlosalberthreis and Others

7 years ago

A Origem das FRBs - Fast Radio Bursts - Space Today TV Ep.1070

Talvez um dos maiores mistérios da astronomia possa estar perto de ser solucionado.

Quem lembra do meu vídeo de retrospectiva de 2017 deve lembrar que eu falei que o ano de 2017 foi um ano interessante para um fenômeno conhecido como FRBs, ou Fast Radio Bursts.

Esses fenômenos são explosões rápidas que acontecem no comprimento de onda de ondas de rádio, são fenômenos raros de serem observados e muito intrigantes.

Chegou-se até a pensar que poderiam ser sinais emitidos por civilizações extra-terrestres.

Um desses fenômenos é especial, e é conhecido como FRB121102.

É um evento de FRB que se repete, mais de 200 explosões de alta energia foram registradas desse único evento.

Em 2017 os pesquisadores conseguiram publicar qual é a origem desse evento, uma região de formação de estrelas numa galáxia anã, localizada a cerca de 3 bilhões de anos-luz de distância da Terra.

Embora a localização tenha sido descoberta, o mistério ainda residia sobre a origem.

O que causa um evento desses?

Um grupo de pesquisadores resolveu então estudar os sinais recebidos desse evento de FRB e descobriram algo interessante, que essa explosão tinha uma propriedade conhecida como polarização.

E esse efeito de polarização permitiu que os astrônomos estudassem o ambiente da fonte que gerou essa FRB.

O ambiente da FRB 121102 possui um campo magnético intenso em um plasma de grande densidade.

Isso foi possível descobrir pois a polarização sofreu uma perturbação muito intensa, perturbação essa que é causada pela presença de um campo magnético muito forte.

Sabendo também que a duração das explosões dessa FRB varia de 30 microssegundos a 9 milissegundos, os astrônomos integraram essas informações e chegaram à seguinte conclusão.

A fonte é pequena, com cerca de 10 km de diâmetro, mas que é extremamente densa e que gera um campo magnético intenso.

Isso se encaixa muito bem em estrelas de nêutrons.

Ou uma magentar interagindo com a nebulosa de material expelido pela estrela original.

Ou até mesmo um pulsar.

O mecanismo exato não é conhecido ainda, mas uma coisa é certa, o ambiente onde a FRB foi gerada é único e pode indicar um novo tipo de objeto ou uma nova interação entre dois objetos densos e altamente magnetizados.

Assim, um dos grandes mistérios da astronomia está aos poucos sendo completamente entendido o que é muito importante para entendermos o funcionamento do universo.

8 years ago

What’s Up for June 2017?

Have a planet party and compare Saturn and Jupiter! We’ll show you where and when to point your telescope or binoculars to see these planets and their largest moons. 

image

Meet at midnight to have a planetary party when Jupiter and Saturn are visible at the same time!

image

The best time will be after midnight on June 17. To see the best details, you’ll need a telescope.

image

Saturn will be at opposition on June 14, when Saturn, the Earth and the sun are in a straight line.

image

Opposition provides the best views of Saturn and several of its brightest moons. At the very least, you should be able to see Saturn’s moon Titan, which is larger and brighter than Earth’s moon.

image

As mentioned earlier, you’ll be able to see Jupiter and Saturn in the night sky this month. Through a telescope, you’ll be able to see the cloud bands on both planets. Saturn’s cloud bands are fainter than those on Jupiter. 

image

You’ll also have a great view of Saturn’s Cassini Division, discovered by astronomer Giovanni Cassini in 1675, namesake of our Cassini spacecraft.

image

Our Cassini spacecraft has been orbiting the planet since 2004 and is on a trajectory that will ultimately plunge it into Saturn’s atmosphere on September 15, 2017, bringing the mission to a close. 

image

Our Juno spacecraft recently completed its sixth Jupiter flyby. Using only binoculars you can observe Jupiter’s 4 Galilean moons - Io, Callisto, Ganymede and Europa.

image

To learn about What’s Up in the skies for June 2017, watch the full video:

For more astronomy events, check out NASA’s Night Sky Network at https://nightsky.jpl.nasa.gov/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

9 years ago
Os Astrónomos Usaram O ALMA E Os Telescópios Do IRAM Para Fazer A Primeira Medição Direta Da Temperatura

Os astrónomos usaram o ALMA e os telescópios do IRAM para fazer a primeira medição direta da temperatura dos grãos de poeira grandes situados nas regiões periféricas de um disco de formação planetária que se encontra em torno de uma estrela jovem. Ao observar de forma inovadora um objeto cujo nome informal é Disco Voador, os astrónomos descobriram que os grãos de poeira são muito mais frios do que o esperado: -266º Celsius. Este resultado surpreendente sugere que os modelos teóricos destes discos precisam de ser revistos.

Uma equipa internacional liderada por Stephane Guilloteau do Laboratoire d´Astrophysique de Bordeaux, França, mediu a temperatura de enormes grãos de poeira que se encontram em torno da jovem estrela 2MASS J16281370-2431391 na região de formação estelar Rho Ophiuchi, a cerca de 400 anos-luz de distância da Terra.  Esta estrela encontra-se rodeada por um disco de gás e poeira — chamado disco protoplanetário, uma vez que se encontra na fase inicial da formação de um sistema planetário. Este disco é visto de perfil quando observado a partir da Terra e a sua aparência em imagens no visível levou a que se lhe desse o nome informal de Disco Voador. Os astrónomos utilizaram o ALMA para observar o brilho emitido pelas moléculas de monóxido de carbono no disco da 2MASS J16281370-2431391. As imagens revelaram-se extremamente nítidas e descobriu-se algo estranho — em alguns casos o sinal recebido era negativo. Normalmente um sinal negativo é fisicamente impossível, mas neste caso existe uma explicação, que leva a uma conclusão surpreendente.  O autor principal Stephane Guilloteau explica: “Este disco não se observa sobre um céu noturno escuro e vazio mas sim em silhueta, frente ao brilho da Nebulosa Rho Ophiuchi. O brilho difuso é demasiado extenso para ser detectado pelo ALMA, no entanto é absorvido pelo disco. O sinal negativo resultante significa que partes do disco estão mais frias do que o fundo. Na realidade, a Terra encontra-se na sombra do Disco Voador!” A equipa combinou medições do disco obtidas pelo ALMA com observações do brilho de fundo obtidas pelo telescópioIRAM de 30 metros, situado em Espanha [1]. Derivou-se uma temperatura para os grãos de poeira do disco de apenas -266º Celsius (ou seja, apenas 7º acima do zero absoluto, ou seja 7 Kelvin) à distância de cerca de 15 mil milhões de km da estrela central [2]. Esta é a primeira medição direta da temperatura de grãos de poeira grandes (com tamanhos de cerca de 1 milímetro) em tais objetos. A temperatura medida é muito mais baixa dos que os -258 a -253º Celsius (15 a 20 Kelvin) que a maioria dos modelos teóricos prevê.  Para explicar esta discrepância, os grãos de poeira grandes devem ter propriedades diferentes das que se assumem atualmente, de modo a permitirem o seu arrefecimento até temperaturas tão baixas. “Para compreendermos qual o impacto desta descoberta na estrutura do disco, temos que descobrir que propriedades da poeira, que sejam plausíveis, podem resultar de tão baixas temperaturas. Temos algumas ideias — por exemplo, a temperatura pode depender do tamanho dos grãos, com os maiores a apresentarem temperaturas mais baixas do que os mais pequenos. No entanto, ainda é muito cedo para termos certezas,” acrescenta o co-autor do trabalho Emmanuel di Folco (Laboratoire d´Astrophysique de Bordeaux). Se estas temperaturas baixas da poeira forem encontradas como sendo uma característica normal dos discos protoplanetários, este facto pode ter muitas consequências na compreensão de como é que estes objetos se formam e evoluem. Por exemplo, propriedades diferentes da poeira afectarão o que se passa quando as partículas colidem e portanto afectarão também o seu papel na criação das sementes da formação de planetas. Ainda não sabemos se esta alteração das propriedades da poeira é ou não significativa relativamente a este exemplo. Temperaturas baixas da poeira podem também ter um grande impacto nos discos de poeira mais pequenos que se sabe existirem. Se estes discos forem maioritariamente compostos por grãos maiores e mais frios do que o que se supõe atualmente, isto pode significar que estes discos compactos são arbitrariamente massivos e por isso podem ainda formar planetas gigantes relativamente próximos da estrela central. São claramente necessárias mais observações, no entanto parece que a poeira mais fria descoberta pelo ALMA poderá ter consequências significativas na compreensão dos discos protoplanetários.

Fonte:

http://www.eso.org/public/brazil/news/eso1604/

XxK�v�lO�

8 years ago

Em Dezembro de 2015, a ESA lançou o LISA Pathfinder.

Depois de viajar 1.5 milhão de quilômetros e estacionar no ponto de Lagrange onde ficaria operacional, sua missão científica começou especificamente no dia 1 de Março de 2016.

Mas você conhece o LISA Pathfinder, sabe para que ele serve?

O LISA Pathfinder é um projeto da Agência Espacial Europeia que tem por objetivo provar uma tecnologia. A tecnologia de que é possível manter no espaço, dois cubos idênticos de ouro em queda livre, e não somente isso, mas a queda livre mais precisa já conseguida no espaço. Com as massas em um movimento sujeito apenas pela ação da gravidade, será possível realizar uma missão para medir as ondas gravitacionais do espaço.

Todo mundo deve lembrar que esse ano foi anunciado a detecção pela primeira vez das ondas gravitacionais, pelo LIGO, um experimento feito em Terra com dois equipamentos nos EUA. O ponto fundamental aqui é que as ondas gravitacionais ocorrem em um grande intervalo de frequências, e são necessários diferentes equipamentos para registrá-las.

A frequência das ondas gravitacionais detectadas pelo LIGO está na casa dos 100 Hz, com um experimento no espaço como o LISA será possível detectar ondas gravitacionais com frequência milhões de vezes menor do que essa.

Se vocês se lembram bem, o que causou as ondas gravitacionais detectadas pelo LIGO foi a fusão de dois buracos negros de massas estelares. Os astrônomos agora querem detectar colisões e eventos de objetos maiores, como a fusão de buracos negros supermassivos, eventos esses que geram uma frequência bem menor e só um experimento no espaço poderia detectar.

Os resultados mostram que o LISA Pathfinder conseguiu sim provar essa tecnologia, o LISA conseguiu colocar em queda livre protegido de todas as forças, somente com a gravidade atuando, dois cubos de metal com 46 centímetros de lado, com uma precisão 5 vezes maior do que aquela necessária, demonstrando que é sim possível realizar esse tipo de experimento no espaço.

Os resultados foram publicados na revista especializada Physical Review Letters e está animando os cientistas em todo o mundo, pois esses resultados superam em muito as expectativas mais otimistas sobre os resultados do LISA Pathfinder.

O LISA Patfinder é o início de um projeto muito mais ambicioso, o LISA, um sistema de detecção de ondas gravitacionais, que usará 3 naves, separadas por uma distância de 5 milhões de quilômetros entre elas e cada uma delas com cubos em queda livre, assim estará montado o detector de ondas gravitacionais que é o sonho dos astrônomos.

As ondas gravitacionais começaram a pouco a transformar a astronomia, nos dando a chance de conhecer o universo de um novo ponto de vista. E o LISA Pathfinder deu o primeiro passo, com sucesso para se detectar as ondas gravitacionais de baixa frequência do espaço.

(via https://www.youtube.com/watch?v=0KJR4-NP0kA)

7 years ago
The Sudbury Neutrino Observatory (SNO)
The Sudbury Neutrino Observatory (SNO)
The Sudbury Neutrino Observatory (SNO)

The Sudbury Neutrino Observatory (SNO)

Located in a cave more than a mile underground in Canada, SNO can be thought of as a type of telescope, though it bears little resemblance to the image most people associate with that word. It consists of an 18-meters-in-diameter stainless steel geodesic sphere inside of which is an acrylic vessel filled with 1000 tons of heavy water (deuterium oxide or D2O). Attached to the sphere are 9,522 ultra-sensitive light-sensors called photomultiplier tubes. When neutrinos passing through the heavy water interact with deuterium nuclei, flashes of light, called Cerenkov radiation, are emitted. The photomultiplier tubes detect these light flashes and convert them into electronic signals that scientists can analyze for the presence of all three types of neutrinos. 

Berkeley Lab

5 years ago

A pandemia do coronavírus (COVID-19) estará marcado na história mundial. Pois, além de ser capaz de paralisar as atividades econômicas no mundo inteiro, esta situação, para diversos economistas, poderá ocasionar uma recessão mundial bastante significativa. #FicaEmCasa

8 years ago

Juno: Join the Mission!

Our Juno spacecraft may be millions of miles from Earth, but that doesn’t mean you can’t get involved with the mission and its science. Here are a few ways that you can join in on the fun:

Juno Orbit Insertion

image

This July 4, our solar-powered Juno spacecraft arrives at Jupiter after an almost five-year journey. In the evening of July 4, the spacecraft will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour so it can be captured into the gas giant’s orbit. Watch live coverage of these events on NASA Television:

Pre-Orbit Insertion Briefing Monday, July 4 at 12 p.m. EDT

Orbit Insertion Coverage Monday, July 4 at 10:30 p.m. EDT

Join Us On Social Media

image

Orbit Insertion Coverage Facebook Live Monday, July 4 at 10:30 p.m. EDT

Be sure to also check out and follow Juno coverage on the NASA Snapchat account!

JunoCam

image

The Juno spacecraft will give us new views of Jupiter’s swirling clouds, courtesy of its color camera called JunoCam. But unlike previous space missions, professional scientists will not be the ones producing the processed views, or even choosing which images to capture. Instead, the public will act as a virtual imaging team, participating in key steps of the process, from identifying features of interest to sharing the finished images online.

image

After JunoCam data arrives on Earth, members of the public will process the images to create color pictures. Juno scientists will ensure JunoCam returns a few great shots of Jupiter’s polar regions, but the overwhelming majority of the camera’s image targets will be chosen by the public, with the data being processed by them as well. Learn more about JunoCam HERE.

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

1 month ago
Contemplem A Natureza Como Se Fossem Os últimos Momentos De Existência Dela.

Contemplem a natureza como se fossem os últimos momentos de existência dela.

📅 Data de registro: 5 de agosto de 2024 às 18:26


Tags
7 years ago
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)
Halo (optical Phenomenon)

Halo (optical phenomenon)

Halo is the name for a family of optical phenomena produced by light interacting with ice crystals suspended in the atmosphere. Halos can have many forms, ranging from colored or white rings to arcs and spots in the sky. Many of these are near the Sun or Moon, but others occur elsewhere or even in the opposite part of the sky. Among the best known halo types are the circular halo (properly called the 22° halo), light pillars and sun dogs, but there are many more; some of them fairly common, others (extremely) rare.

The ice crystals responsible for halos are typically suspended in cirrus or cirrostratus clouds high (5–10 km, or 3–6 miles) in the upper troposphere, but in cold weather they can also float near the ground, in which case they are referred to as diamond dust. The particular shape and orientation of the crystals are responsible for the type of halo observed. Light is reflected and refracted by the ice crystals and may split up into colors because of dispersion. The crystals behave like prisms and mirrors, refracting and reflecting light between their faces, sending shafts of light in particular directions.

source

images: x, x, x, x, x, x, x, x, x, x

3 years ago

Neste momento começo a assistir a primeira temporada da série @theexpanse.

O que essa série tem a nos mostrar sobre o possível futuro de colonização de outros planetas?!


Tags
carlosalberthreis - Carlos Alberth Reis
Carlos Alberth Reis

1994.4.26 • Parintins, Amazonas, Brasil

191 posts

Explore Tumblr Blog
Search Through Tumblr Tags