Os astrónomos usaram o ALMA e os telescópios do IRAM para fazer a primeira medição direta da temperatura dos grãos de poeira grandes situados nas regiões periféricas de um disco de formação planetária que se encontra em torno de uma estrela jovem. Ao observar de forma inovadora um objeto cujo nome informal é Disco Voador, os astrónomos descobriram que os grãos de poeira são muito mais frios do que o esperado: -266º Celsius. Este resultado surpreendente sugere que os modelos teóricos destes discos precisam de ser revistos.
Uma equipa internacional liderada por Stephane Guilloteau do Laboratoire d´Astrophysique de Bordeaux, França, mediu a temperatura de enormes grãos de poeira que se encontram em torno da jovem estrela 2MASS J16281370-2431391 na região de formação estelar Rho Ophiuchi, a cerca de 400 anos-luz de distância da Terra. Esta estrela encontra-se rodeada por um disco de gás e poeira — chamado disco protoplanetário, uma vez que se encontra na fase inicial da formação de um sistema planetário. Este disco é visto de perfil quando observado a partir da Terra e a sua aparência em imagens no visível levou a que se lhe desse o nome informal de Disco Voador. Os astrónomos utilizaram o ALMA para observar o brilho emitido pelas moléculas de monóxido de carbono no disco da 2MASS J16281370-2431391. As imagens revelaram-se extremamente nítidas e descobriu-se algo estranho — em alguns casos o sinal recebido era negativo. Normalmente um sinal negativo é fisicamente impossível, mas neste caso existe uma explicação, que leva a uma conclusão surpreendente. O autor principal Stephane Guilloteau explica: “Este disco não se observa sobre um céu noturno escuro e vazio mas sim em silhueta, frente ao brilho da Nebulosa Rho Ophiuchi. O brilho difuso é demasiado extenso para ser detectado pelo ALMA, no entanto é absorvido pelo disco. O sinal negativo resultante significa que partes do disco estão mais frias do que o fundo. Na realidade, a Terra encontra-se na sombra do Disco Voador!” A equipa combinou medições do disco obtidas pelo ALMA com observações do brilho de fundo obtidas pelo telescópioIRAM de 30 metros, situado em Espanha [1]. Derivou-se uma temperatura para os grãos de poeira do disco de apenas -266º Celsius (ou seja, apenas 7º acima do zero absoluto, ou seja 7 Kelvin) à distância de cerca de 15 mil milhões de km da estrela central [2]. Esta é a primeira medição direta da temperatura de grãos de poeira grandes (com tamanhos de cerca de 1 milímetro) em tais objetos. A temperatura medida é muito mais baixa dos que os -258 a -253º Celsius (15 a 20 Kelvin) que a maioria dos modelos teóricos prevê. Para explicar esta discrepância, os grãos de poeira grandes devem ter propriedades diferentes das que se assumem atualmente, de modo a permitirem o seu arrefecimento até temperaturas tão baixas. “Para compreendermos qual o impacto desta descoberta na estrutura do disco, temos que descobrir que propriedades da poeira, que sejam plausíveis, podem resultar de tão baixas temperaturas. Temos algumas ideias — por exemplo, a temperatura pode depender do tamanho dos grãos, com os maiores a apresentarem temperaturas mais baixas do que os mais pequenos. No entanto, ainda é muito cedo para termos certezas,” acrescenta o co-autor do trabalho Emmanuel di Folco (Laboratoire d´Astrophysique de Bordeaux). Se estas temperaturas baixas da poeira forem encontradas como sendo uma característica normal dos discos protoplanetários, este facto pode ter muitas consequências na compreensão de como é que estes objetos se formam e evoluem. Por exemplo, propriedades diferentes da poeira afectarão o que se passa quando as partículas colidem e portanto afectarão também o seu papel na criação das sementes da formação de planetas. Ainda não sabemos se esta alteração das propriedades da poeira é ou não significativa relativamente a este exemplo. Temperaturas baixas da poeira podem também ter um grande impacto nos discos de poeira mais pequenos que se sabe existirem. Se estes discos forem maioritariamente compostos por grãos maiores e mais frios do que o que se supõe atualmente, isto pode significar que estes discos compactos são arbitrariamente massivos e por isso podem ainda formar planetas gigantes relativamente próximos da estrela central. São claramente necessárias mais observações, no entanto parece que a poeira mais fria descoberta pelo ALMA poderá ter consequências significativas na compreensão dos discos protoplanetários.
Fonte:
http://www.eso.org/public/brazil/news/eso1604/
XxK�v�lO�
Meet at midnight to have a planetary party when Jupiter and Saturn are visible at the same time!
The best time will be after midnight on June 17. To see the best details, you’ll need a telescope.
Saturn will be at opposition on June 14, when Saturn, the Earth and the sun are in a straight line.
Opposition provides the best views of Saturn and several of its brightest moons. At the very least, you should be able to see Saturn’s moon Titan, which is larger and brighter than Earth’s moon.
As mentioned earlier, you’ll be able to see Jupiter and Saturn in the night sky this month. Through a telescope, you’ll be able to see the cloud bands on both planets. Saturn’s cloud bands are fainter than those on Jupiter.
You’ll also have a great view of Saturn’s Cassini Division, discovered by astronomer Giovanni Cassini in 1675, namesake of our Cassini spacecraft.
Our Cassini spacecraft has been orbiting the planet since 2004 and is on a trajectory that will ultimately plunge it into Saturn’s atmosphere on September 15, 2017, bringing the mission to a close.
Our Juno spacecraft recently completed its sixth Jupiter flyby. Using only binoculars you can observe Jupiter’s 4 Galilean moons - Io, Callisto, Ganymede and Europa.
To learn about What’s Up in the skies for June 2017, watch the full video:
For more astronomy events, check out NASA’s Night Sky Network at https://nightsky.jpl.nasa.gov/.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Pequena galeria com imagens de colisão/fusão de galáxias, feitas pelo Telescópio Espacial Hubble.
With its blue skies, puffy white clouds, warm beaches and abundant life, planet Earth is a pretty special place. A quick survey of the solar system reveals nothing else like it. But how special is Earth, really?
One way to find out is to look for other worlds like ours elsewhere in the galaxy. Astronomers using our Kepler Space Telescope and other observatories have been doing just that!
In recent years they’ve been finding other planets increasingly similar to Earth, but still none that appear as hospitable as our home world. For those researchers, the search goes on.
Another group of researchers have taken on an entirely different approach. Instead of looking for Earth-like planets, they’ve been looking for Earth-like ingredients. Consider the following:
Our planet is rich in elements such as carbon, oxygen, iron, magnesium, silicon and sulfur…the stuff of rocks, air, oceans and life. Are these elements widespread elsewhere in the universe?
To find out, a team of astronomers led by the Japanese Aerospace Exploration Agency (JAXA), with our participation, used Suzaku. This Japanese X-ray satellite was used to survey a cluster of galaxies located in the direction of the constellation Virgo.
The Virgo cluster is a massive swarm of more than 2,000 galaxies, many similar in appearance to our own Milky Way, located about 54 million light years away. The space between the member galaxies is filled with a diffuse gas, so hot that it glows in X-rays. Instruments onboard Suzaku were able to look at that gas and determine which elements it’s made of.
Reporting their findings in the Astrophysical Journal Letters, they reported findings of iron, magnesium, silicon and sulfur throughout the Virgo galaxy cluster. The elemental ratios are constant throughout the entire volume of the cluster, and roughly consistent with the composition of the sun and most of the stars in our own galaxy.
When the Universe was born in the Big Bang 13.8 billon years ago, elements heavier than carbon were rare. These elements are present today, mainly because of supernova explosions.
Massive stars cook elements such as, carbon, oxygen, iron, magnesium, silicon and sulfur in their hot cores and then spew them far and wide when the stars explode.
According to the observations of Suzaku, the ingredients for making sun-like stars and Earth-like planets have been scattered far and wide by these explosions. Indeed, they appear to be widespread in the cosmos. The elements so important to life on Earth are available on average and in similar relative proportions throughout the bulk of the universe. In other words, the chemical requirements for life are common.
Earth is still special, but according to Suzaku, there might be other special places too. Suzaku recently completed its highly successful mission.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A algum tempo eu trouxe aqui no canal um vídeo sobre a estrela HL Tauri, onde o ALMA tinha feito uma imagem espetacular sobre o disco de poeira ao redor da estrela, mostrando gaps, ou vazios, que poderiam estar relacionados com a presença de planetas recém formados.
Porém, os astrônomos não tinham chegado a uma resposta definitiva sobre o que eram os gaps no disco de poeira, muitos acreditavam que poderia sim ser as marcas da formação de planetas, porém outros contestavam essa teoria, principalmente pelo fato da HL Tauri ser uma estrela muito jovem, com cerca de um milhão de anos, e os astrônomos acreditavam que seria necessário pelo menos 10 milhões de anos para a formação de planetas.
Esses astrônomos sugeriram outros processos para a formação dos gaps, como a mudança no tamanho da poeira, por meio da aglutinação ou da destruição, ou até mesmo pela formação da poeira, pelo congelamento das moléculas gás.
Qual teoria está correta? A formação de planetas, ou a mudança na poeira?
Os astrônomos então foram adquirir novos dados, dessa vez, os astrônomos focaram na análise do gás ao redor da estrela para entender assim a natureza do disco. A ideia deles era a seguinte, se os gaps no disco de poeira fossem provocados pela variação na propriedade da poeira, isso não afetaria o gás diretamente, já se os gaps fossem formados pela gravidade de planetas em formação, isso também afetaria o gás, criando gaps no gás também.
Utilizando os dados públicos do ALMA de 2014 a equipe de astrônomos extraiu as emissões de moléculas de gás e utilizou uma nova técnica de processamento dos dados.
Aliando o processamento dos dados com as novas informações extraídas eles chegaram a conclusão de que existem também gaps no disco de gás, e esses gaps coincidem com os do disco de poeira. Isso suporta a ideia de que esses vazios no disco, são sim as marcas deixadas pela formação de planetas, e pelo fato dos vazios tanto no disco de poeira como no disco de gás se ajustarem tão bem, desfavorece muito a ideia de uma variação somente na poeira.
A HL Tauri possui dois gaps no seu disco, um mais interno e um mais externo. O mais interno provavelmente se deve à formação de um planeta com uma massa equivalente a 0.8 vezes a massa de Júpiter.
Enquanto que o gap externo pode ser que exista devido à formação de um planeta com uma massa equivalente a 2.1 vezes a massa de Júpiter. Porém os resultados para esse disco mais externo são carregados de muita incerteza, e novas informações serão necessárias para que se possa ter certeza do que está acontecendo ali.
Por enquanto, uma conclusão importante dessa pesquisa é que de acordo com os dados, a formação de planetas parece acontecer bem antes do que se previam nos modelos anteriormente. Com mais dados sobre esse tipo de disco e sobre esses gaps, se poderá ter certeza disso, e os modelos poderão então ser reescritos, para melhor representar a formação de planetas.
(via https://www.youtube.com/watch?v=UdxUGCezWOo)
Independente de estar classificado ou não, sempre serei #Cruzeiro 🔵✨
Enquanto a Lua passava em frente do Sol durante o eclipse total do dia 21 de Agosto de 2017, um fotógrafo da NASA capturou uma foto que pode ser considerada mais rara do que o próprio eclipse.
Joel Kowsky, um dos editores de fotografia da agência, foi até Banner no Wyoming, para ver o eclipse total do Sol, quando ele fotografou a Estação Espacial Internacional passando na frente do Sol crescente.
Abaixo você pode ver um vídeo que foi feito usando uma câmera de alta velocidade que registrou 1500 frames por segundo. Ele também fotografou a ISS com uma câmera padrão.
Essa alta velocidade é necessária pois a ISS tem o tamanho de um campo de futebol, orbita a Terra a cerca de 300 km de altura e se move a uma velocidade 17500 milhas por hora.
Para fazer esse belo registro é necessário um pouco de sorte e meses e meses de planejamento.
ffff%v;��X
Relembrando o sorvete da segunda-feira que ocorreu em 2024, na companhia da minha mãe e o Seu Joaz que é intitulado por mim de "O Sineiro Da Catedral". 🍦
📅 Data de registro: 3 de junho de 2024 às 19:58
Nessa quarta-feira, dia 27 de Julho de 2016, às 6:00 da manhã, hora de Brasília, o Electrical Support System Processor Unit, ou ESS, da sonda Rosetta será desligado.
O ESS, é a interface usada para realizar, ou pelo menos tentar as comunicações entre a sonda e o módulo Philae, que permanece em silêncio desde 9 de Julho de 2015.
Esse desligamento já é um preparativo e faz parte das ações que serão realizadas para o encerramento da missão da sonda Rosetta na órbita do cometa 67P/Churyumov-Gerasimenko.
A sonda encontra-se a mais de 520 milhões de quilômetros de distância do Sol e já começa a enfrentar uma perda significante de potência.
Para manter a sonda ativa cientificamente pelos próximos 2 meses, é necessário iniciar o desligamento de alguns sistemas.
Como o módulo Philae, não se comunica desde Julho de 2015, e já foi considerado como estando em hibernação eterna, mesmo com a sonda Rosetta passando bem perto do cometa e tentando comunicação, o ESS foi escolhido para ser desligado, encerrando assim de uma vez a missão do módulo Philae.
Descanse em paz Philae.
(via https://www.youtube.com/watch?v=uNbKPaNob0k)