Boa noite galeraa!!
A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity.
This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada
1° Strong lensing: where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images.
Einstein ring. credit: NASA/ESA&Hubble
2° Weak lensing: where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens. By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in the area: in particular, the background distribution of dark matter can be reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large number of galaxies must be used in these surveys.
The effects of foreground galaxy cluster mass on background galaxy shapes. The upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right panel shows this same scenario, but includes the effects of lensing. The middle panel shows a 3-d representation of the positions of cluster and source galaxies, relative to the observer. Note that the background galaxies appear stretched tangentially around the cluster.
3° Microlensing: where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. The effect is small, such that (in the case of strong lensing) even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds. Galaxy clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite distant, many hundreds of megaparsecs away from our Galaxy.
Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a strong lens produces multiple images, there will be a relative time delay between two paths: that is, in one image the lensed object will be observed before the other image.
As an exoplanet passes in front of a more distant star, its gravity causes the trajectory of the starlight to bend, and in some cases results in a brief brightening of the background star as seen by a telescope. The artistic concept illustrates this effect. This phenomenon of gravitational microlensing enables scientists to search for exoplanets that are too distant and dark to detect any other way.Credits: NASA Ames/JPL-Caltech/T. Pyle
Explanation in terms of space–time curvature
Simulated gravitational lensing by black hole by: Earther
In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer’s eye, just like an ordinary lens. In General Relativity the speed of light depends on the gravitational potential (aka the metric) and this bending can be viewed as a consequence of the light traveling along a gradient in light speed. Light rays are the boundary between the future, the spacelike, and the past regions. The gravitational attraction can be viewed as the motion of undisturbed objects in a background curved geometry or alternatively as the response of objects to a force in a flat geometry.
A galaxy perfectly aligned with a supernova (supernova PS1-10afx) acts as a cosmic magnifying glass, making it appear 100 billion times more dazzling than our Sun. Image credit: Anupreeta More/Kavli IPMU.
To learn more, click here.
📅 Data de registro: 5 de agosto de 2024 às 18:26
O absurdo do Brasil…ah é mesmo, tem o legado da copa e nem se compara com as descobertas da New Horizons.
Fazer o bem, faz bem!
Banner da Pastoral Social
E a descoberta de exoplanetas continua, bem, isso é meio óbvio, aliás, é uma das áreas mais prolíficas da astronomia atualmente em grandes descobertas.
Dessa vez uma equipe internacional de astrônomos detectou 3 exoplanetas num sistema estelar binário formado por estrelas gêmeas.
O sistema estelar HD 133131 está localizado a aproximadamente 163 anos-luz de distância da Terra, é um sistema binário que foi descoberto em 1972, tem uma idade estimada de 9.5 bilhões de anos e é formado por duas estrelas gêmeas, ou seja, de mesmo tipo espectral, e que são também do mesmo tipo espectral que o Sol, G2V.
As estrelas estão separadas por 360 UA.
Tudo isso faz desse sistema, primeiro, o formado por estrelas mais próximas onde foram descobertos exoplanetas, e além disso, ambas as estrelas do sistema possuem planetas.
Uma das estrelas possui dois planetas com massas 0.6 e 1.4 vezes a massa de Júpiter e a outra estrela possui um planetas com uma massa 2.5 vezes a massa de Júpiter, ou seja, todos são planetas gigantes.
Mas esse sistema possui mais características peculiares.
As estrelas desse sistema são classificadas como sendo pobres em metal, ou seja, são formadas principalmente por hidrogênio e hélio, isso é incomum em estrelas que abrigam planetas gigantes, já que a maioria é rica em metal e somente 6 sistemas binários pobres em metal foram encontrados com exoplanetas, o que deixa a descoberta mais intrigante.
Já não bastasse tudo isso, ao estudar o sistema em detalhe, os astrônomos descobriram que as estrelas na verdade, possuem uma pequena diferença química na sua composição, o que deixaria de fazer com que elas fossem gêmeas idênticas, e passassem então a serem classificadas somente como gêmeas.
Essa diferenciação pode indicar que uma estrela pode ter engolido planetas menores ainda em formação e isso alterou sua composição química, levemente.
Essa descoberta marcou também a primeira descoberta feita somente com dados obtidos pelo instrumento Planet Finder Spectrograph, que fica acoplado ao Telescópio Magellan II de 6.5 metros no Observatório de Las Campanas no Chile.
Descobrir um sistema tão único assim é de suma importância para se entender a formação de planetas especialmente em sistemas binários.
Ajudar a montar o quebra cabeça de como o Sistema Solar se formou e de alguma forma ajudar os astrônomos a compreender onde planetas possivelmente habitáveis poderiam ser encontrados.
(via https://www.youtube.com/watch?v=GHMfsc0BFj4)
Watch the Perseid Meteor Shower at Its Peak Tonight
The last time we had an outburst, that is a meteor shower with more meteors than usual, was in 2009. This year’s Perseid meteor shower is predicted to be just as spectacular starting tonight!
Plan to stay up late tonight or set your alarm clock for the wee morning hours to see this cosmic display of “shooting stars” light up the night sky. Known for it’s fast and bright meteors, tonight’s annual Perseid meteor shower is anticipated to be one of the best meteor viewing opportunities this year.
For stargazers experiencing cloudy or light-polluted skies, a live broadcast of the Perseid meteor shower will be available via Ustream overnight tonight and tomorrow, beginning at 10 p.m. EDT.
“Forecasters are predicting a Perseid outburst this year with double normal rates on the night of Aug. 11-12,” said Bill Cooke with NASA’s Meteoroid Environments Office in Huntsville, Alabama. “Under perfect conditions, rates could soar to 200 meteors per hour.”
Every Perseid meteor is a tiny piece of the comet Swift-Tuttle, which orbits the sun every 133 years. When Earth crosses paths with Swift-Tuttle’s debris, specks of comet-stuff hit Earth’s atmosphere and disintegrate in flashes of light. These meteors are called Perseids because they seem to fly out of the constellation Perseus.
Most years, Earth might graze the edge of Swift-Tuttle’s debris stream, where there’s less activity. Occasionally, though, Jupiter’s gravity tugs the huge network of dust trails closer, and Earth plows through closer to the middle, where there’s more material.
This is predicted be one of those years!
Make sure to follow us on Tumblr for your regular dose of space.
Não é alinhamento e nem é tão raro assim, vai se repetir em Outubro de 2018, mas não deixa de ser um bom motivo para olhar para cima ao entardecer e observar 5 planetas a olho nu.
A fotografia desta semana mostra fitas de gás e poeira em torno do centro da galáxia espiral barrada NGC 1398. Esta galáxia situa-se na constelação da Fornalha, a aproximadamente 65 milhões de anos-luz de distância da Terra.
Em vez de começarem no meio da galáxia e espiralarem para o exterior, os braços em espiral da NGC 1398 têm origem numa barra direita, formada de estrelas, que corta a região central da galáxia. Uma grande parte das galáxias em espiral — cerca de dois terços — apresenta esta estrutura, no entanto ainda não é claro se e como é que estas barras afectam o comportamento e o desenvolvimento das suas galáxias.
Esta imagem foi criada a partir de dados obtidos pelo instrumento FORS2 (FOcal Reducer/low dispersion Spectrograph 2), montado no Very Large Telescope do ESO (VLT) no Observatório do Paranal, no Chile, e mostra a NGC 1398 em grande detalhe, dos escuros trilhos de poeira que sarapintam os braços em espiral às regiões de formação estelar em tons rosa que aparecem nas regiões mais externas.
A imagem foi criada no âmbito do programa Jóias Cósmicas do ESO, o qual visa obter imagens de objetos interessantes, intrigantes ou visualmente atrativos, utilizando os telescópios do ESO, para efeitos de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são por isso postos à disposição dos astrónomos através do arquivo científico do ESO. Crédito da Imagem: ESO
Falta 1 mês pra sonda Juno chegar em Júpiter. Comecei uma série no canal para explicar a missão. O primeiro vídeo já está no ar - https://youtu.be/qjxJ12IB4MQ
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com