Ok I Get It Now, Most People Need Plans And Structures So Then They Can Study What They're Really Into

ok i get it now, most people need plans and structures so then they can study what they're really into in the future

btw today i'm doing operations on topo spaces, i love that already

i gotta say i don't buy all them planning strategies and tips that require more effort than just sitting and doing the work

i mean that might help some people but i find that when i am doing something important to me i need no plans nor do i need motivation, i also don't procrastinate, everything falls into its right place

and if achieving something takes so much effort in preparation, is this even supposed to be a thing? idk, maybe that's the reason why i have no external proof of my work lol

More Posts from Bsdndprplplld and Others

2 years ago

29 X 2022

another exhausting week finally over! fortunately I have two extra weekend days, so I can rest and do my homework without stressing over it

I found another promising youtube channel about learning. and "insanely difficult subjects" sounds about right when it comes to everything that's happening in math

I wish there was more content about learning math specifically. the tips I see, however good and useful for studying memory-based stuff such as biology or history, don't seem to work for math

for now my best method is to study the theory from the textbook, trying to prove everything on my own or if that fails, working through the proofs, coming up with examples of objects and asking (possibly dumb) questions that I then try to answer. afterwards I proceed to solving exercises

recently I've been studying mainly commutative algebra, in particular the localization

29 X 2022

we didn't spend much time discussing local rings so I had to find some useful properties on my own. the whole idea of "local properties" is an interesting one and I definitely want to read more about it

29 X 2022
29 X 2022
29 X 2022

I find it to be much more elegant to study localization through its universal property and exact sequences rather than through calculation on elements. it's funny how you can cheat so many of our homework problems by knowing basics of category theory and a little bit of homological algebra

I wonder if it's possible to learn math using mind maps, never actually tried. here is my attempt at doing that for one of the subjects in complex analysis:

29 X 2022

other than studying I had to prepare a presentation for one of my courses

29 X 2022

the topics were given to us by the professor so I thought it would be boring and technical, but I got lucky to discuss the possible generalizations of the Jordan theorem

now I'm gonna talk about something more personal

this week has been difficult because my brain doesn't enjoy existing. some days I had so many meltdowns and shutdowns, I could barely think and speak, let alone study difficult subjects in math. it's really disappointing, as I thought it got better after introducing new medication, but apparently I still can't handle time pressure and I break very easily when emotions become overwhelming (which they frequently do). one of the most discouraging parts of a neurodivergent brain is that you can't always say "alright then I'll just work harder" when you see that the situation requires it. you can't, because your brain has a certain threshold of "how much can you take before you snap" and no tips for studying when you're tired can change that. if you try, you'll just have a meltdown and your day is over, the rest of it must be spent regaining your strength and all you can do is hoping that tomorrow will be better

I wish I could always simply enjoy math and see it as an escape route from a confusing world of human interaction and unpredictable emotions, but whenever there is a deadline or grading criteria, I can hardly enjoy it anymore. I know that this is not what it's always gonna be, the further I go the less deadlines and exams we have, so I must wait and one day it might be okey

since june I've been trying to discuss accommodations regarding adhd and autism with my university but the process takes forever and I'm slowly losing hope that I will ever have it easier

nonetheless, I'm willing to do everything to achieve the goal of spending my days alone working on developing some new theory. just a few more years and I might start living the dream


Tags
2 years ago

When banned from using "trivially" in a proof...

“Hello all. In a fellow mathposter's topology class they were not allowed to use the word "trivially" or any synonym thereof his proofs. The person presenting his work then crossed out "trivially" and wrote instead "indubitably." This inspired him to write a program that will insert condescending adverbial phrases before any statement in a math proof. Trivially, this is a repost. Below is the list--please come up with more if you can!

Obviously

Clearly

Anyone can see that

Trivially

Indubitably

It follows that

Evidently

By basic applications of previously proven lemmas,

The proof is left to the reader that

It goes without saying that

Consequently

By immediate consequence,

Of course

But then again

By symmetry

Without loss of generality,

Anyone with a fifth grade education can see that

I would wager 5 dollars that

By the contrapositive

We need not waste ink in proving that

By Euler

By Fermat

By a simple diagonalization argument,

We all agree that

It would be absurd to deny that

Unquestionably,

Indisputably,

It is plain to see that

It would be embarrassing to miss the fact that

It would be an insult to my time and yours to prove that

Any cretin with half a brain could see that

By Fermat’s Last Theorem,

By the Axiom of Choice,

It is equivalent to the Riemann Hypothesis that

By a simple counting argument,

Simply put,

One’s mind immediately leaps to the conclusion that

By contradiction,

I shudder to think of the poor soul who denies that

It is readily apparent to the casual observer that

With p < 5% we conclude that

It follows from the Zermelo-Fraenkel axioms that

Set theory tells us that

Divine inspiration reveals to us that

Patently,

Needless to say,

By logic

By the Laws of Mathematics

By all means,

With probability 1,

Who could deny that

Assuming the Continuum Hypothesis,

Galois died in order to show us that

There is a marvellous proof (which is too long to write here) that

We proved in class that

Our friends over at Harvard recently discovered that

It is straightforward to show that

By definition,

By a simple assumption,

It is easy to see that

Even you would be able to see that

Everybody knows that

I don’t know why anybody would ask, but

Between you and me,

Unless you accept Gödel’s Incompleteness Theorem,

A reliable source has told me

It is a matter of simple arithmetic to show that

Beyond a shadow of a doubt,

When we view this problem as an undecidable residue class whose elements are universal DAGs, we see that

You and I both know that

And there you have it,

And as easy as ABC,

And then as quick as a wink,

If you’ve been paying attention you’d realize that

By the Pigeonhole Principle

By circular reasoning we see that

When we make the necessary and sufficient assumptions,

It is beyond the scope of this course to prove that

Only idealogues and sycophants would debate whether

It is an unfortunately common misconception to doubt that

By petitio principii, we assert that

We may take for granted that

For legal reasons I am required to disclose that

It is elementary to show that

I don’t remember why, but you’ll have to trust me that

Following the logical steps, we might conclude

We are all but forced to see that

By the same logic,

I’m not even going to bother to prove that

By Kant’s Categorical imperative,

Everyone and their mother can see that

A child could tell you that

It baffles me that you haven’t already realized that

Notice then that

Just this once I will admit to you that

Using the proper mindset one sees that

Remember the basic laws of common sense:

There is a lovely little argument that shows that

Figure 2 (not shown here) makes it clear that

Alas, would that it were not true that

If I’m being honest with you,

According to the pointy-headed theorists sitting in their Ivory Towers in academia,

We will take as an axiom that

Accept for the moment that

These are your words, not mine, but

A little birdie told me that

I heard through the grapevine that

In the realm of constructive mathematics,

It is a theorem from classical analysis that

Life is too short to prove that

A consequence of IUT is that

As practitioners are generally aware,

It is commonly understood that

As the reader is no doubt cognizant,

As an exercise for the reader, show that

All the cool kids know that

It is not difficult to see that

Terry Tao told me in a personal email that

Behold,

Verify that

In particular,

Moreover,

Yea verily

By inspection,

A trivial but tedious calculation shows that

Suppose by way of contradiction that

By a known theorem,

Henceforth

Recall that

Wherefore said He unto them,

It is the will of the Gods that

It transpires that

We find

As must be obvious to the meanest intellect,

It pleases the symmetry of the world that

Accordingly,

If there be any justice in the world,

It is a matter of fact that

It can be shown that

Implicitly, then

Ipso facto

Which leads us to the conclusion that

Which is to say

That is,

The force of deductive logic then drives one to the conclusion that

Whereafter we find

Assuming the reader’s intellect approaches that of the writer, it should be obvious that

Ergo

With God as my witness,

As a great man once told me,

One would be hard-pressed to disprove that

Even an applied mathematician would concede that

One sees in a trice that

You can convince yourself that

Mama always told me

I know it, you know it, everybody knows that

Even the most incompetent T.A. could see,

This won't be on the test, but

Take it from me,

Axiomatically,

Naturally,

A cursory glance reveals that

As luck would have it,

Through the careful use of common sense,

By the standard argument,

I hope I don’t need to explain that

According to prophecy,

Only a fool would deny that

It is almost obvious that

By method of thinking,

Through sheer force of will,

Intuitively,

I’m sure I don’t need to tell you that

You of all people should realize that

The Math Gods demand that

The clever student will notice

An astute reader will have noticed that

It was once revealed to me in a dream that

Even my grandma knows that

Unless something is horribly wrong,

And now we have all we need to show that

If you use math, you can see that

It holds vacuously that

Now check this out:

Barring causality breakdown, clearly

We don't want to deprive the reader of the joy of discovering for themselves why

One of the Bernoullis probably showed that

Somebody once told me

By extrapolation,

Categorically,

If the reader is sufficiently alert, they will notice that

It’s hard not to prove that

The sophisticated reader will realize that

In this context,

It was Lebesque who first asked whether

As is tradition,

According to local folklore,

We hold these truths to be self-evident that

By simple induction,

In case you weren’t paying attention,

A poor student or a particularly clever dog will realize immediately that

Every student brought up in the American education system is told that

Most experts agree that

Sober readers see that

And would you look at that:

And lo!

By abstract nonsense,

I leave the proof to the suspicious reader that

When one stares at the equations they immediately rearrange themselves to show that

This behooves you to state that

Therefore

The heralds shall sing for generations hence that

If I’ve said it once I’ve said it a thousand times,

Our forefathers built this country on the proposition that

My father told me, and his father before that, and his before that, that

As sure as the sun will rise again tomorrow morning,

The burden of proof is on my opponents to disprove that

If you ask me,

I didn’t think I would have to spell this out, but

For all we know,

Promise me you won’t tell mom, but

It would be a disservice to human intelligence to deny that

Proof of the following has been intentially omitted:

here isn’t enough space in the footnote section to prove that

Someone of your status would understand that

It would stand to reason that

Ostensibly,

The hatred of 10,000 years ensures that

There isn’t enough space in the footnote section to prove that

Simple deduction from peano’s axioms shows

By a careful change of basis we see that

Using Conway’s notation we see that

The TL;DR is that

Certainly,

Surely

An early theorem of Gauss shows that

An English major could deduce that

And Jesus said to his Apostles,

This fact may follow obviously from a theorem, but it's not obvious which theorem you're using:

Word on the streets is that

Assuming an arbitrary alignment of planets, astrology tells us

The voices insist that

Someone whispered to me on the subway yesterday that

For surely all cases,

Indeed,

(To be continued)

3 years ago

6 Things People Don't Always Tell You About Studying

1. you ace tests by overlearning. you should know your notes/flashcards/definitions basically by heart. if someone asks you about a topic when you’re away from class or your notes and you can answer them in a thorough and and accurate answer, then you’re good, you know the material. 

2. if you don’t understand something, it will end up on the test. so just don’t disregard and hope that this specific topic won’t be on the test. give it more attention, help, and practice. find a packet of problems on that one concept and don’t stop until you finish it and know it the best. 

3. sometimes you just need that Parental Push. you know in elementary school, they would tell you “ok now it’s time for you to do your homework! you have a project coming up, start looking for a topic now!” ONE of your teachers might be like this. be thankful for it and follow their advice! these teachers are the best at always keeping you on track with their calendar. if not a teacher, then have one of your friends be that person that can keep you accountable for the things you promised you would do. 

4. you just need to kick your own ass. seriously. i know it sucks and its hard to study for two things at once. BUT. I DONT CARE IF IT’S HARD. you need to do it and at least do it to get it over with because you can’t keep putting things off. If you do, you will eventually run out of time and you will hate yourself. force yourself to do it. i made myself sign up for june ACT even though there’s finals because if i didn’t, i probably never would. like do i think i’m gonna be ready in one month? probably not, SO I BETTER GET ON IT AND START STUDYING! 

5. do homework even if it doesn’t count. if you actually try on it, then you will actually do so much better on the tests, it’s like magic. 

6. literally just get so angry about procrastinating that you make yourself start that assignment. I know how hard it is to kick the procrastination habit. I have to procrastinate. So I make myself start by thinking about my deadlines way early. I think, “oh i have a presentation in three weeks (but it really takes 2 weeks to do), i’ll be good and start today.” when that doesn’t happen, you say you’ll do it tomorrow, and this happens for like the next four days. I get so mad at myself for not starting when i am given a new chance to do so with every passing day. By that time, you actually have exactly how much time you need for it AND you were able to procrastinate the same way you usually do ;)

3 years ago

the alphabet is like, there's the "a" region (abc...), for just, things, there's the "f" region (fgh..), for functions, there's the "i" region (ijk...), for indices, there's the "n" region (nm...), for integers, and the "p" region (pq...), for integers that are prime, there's the "t" region (tsr...), for time and progression and other axes that aren't the usual ones, and then there's the "u" region (uv...), for like, i guess open sets and differentiable functions and the such i guess, and then finally there's the "x" region (xyzw...) for just, variables that are more variable-y

there's also o and l but you shouldn't use those

3 years ago

4-5 VIII 2021

did much topo and walked

sleep: weird. 5 hours. woke up at 3:30, at least right now it seems i might finally fix my circadian rythm

concentration: not good. too little sleep

phone time: good

almost done with operations on topo spaces and did some measure theory today. i love it so much, it's so new and yet so intuitive

tomorrow gonna take a peek at some art probably and possibly finish the operations on topo spaces, hoping to jump right into connected spaces and maybe do some more measure theory. kinda gave up with multivar calc boring af lol


Tags
3 years ago

It's always funny when a math book or a paper starts out with like a foreword/introduction type thing but it calls itself an "Apologia"

Like "Sorry i wrote a new book, this is why i thought i had to do it. Please forgive me."

2 years ago

19 I 2023

this week is kinda crazy

I have a complex analysis test on saturday and the professor said that it will cover the entire semester. thank god I might get away with not knowing anything about analytic number theory lmao

I had troubles sleeping lately, it takes me about 3-4 hours to fall asleep every day. I sleep a lot during the day and it helps a bit but I still feel half-dead all the time. every time I fall asleep my brain can't shut up about some math problem

for the algebraic methods course we were supposed to state and prove the analogue of Baer criterion for sheaves of rings. I was the only person who claimed to have solved this, so I was sentenced to presenting my solution in front of everyone. the assertion holds and I thought I proved it but the professor said that the proof doesn't work, here is what I got:

19 I 2023

he said that we cannot do this on stalks and we have to define a sheaf of ideals instead. when I was showing this I had a migraine so no brain power for me, I couldn't argue why I believe this to be fine. whenever two maps of sheaves agree on each stalk they are equal, so if we show that every extension on stalks is actually B → M on stalks, then doesn't that imply the extension is B → M on sheaves?? probably not, but I don't see where it fails and I'm so pissed that I was unable to ask about it when I was presenting, now it's too late and this shit keeps me up at night

I enjoy sheaf theory very much and I can't wait to have some time to read about schemes, I have a feeling that algebraic geometry and I are gonna be besties

during some interview Eisenbud said that when deciding which speciality to choose one should find a professor that they like and just do what that professor is doing lol. I feel this now that I talked some more to the guy who taught us commutative algebra. since my first year I was sure that I will do algebraic topology but maybe I will actually do AG, because that's what he's doing. is having one brain enough to do both?

anyway I'm glad that my interests fall into the category of fashionable stuff to do in math these days. my bachelor's thesis is likely going to be about simply-connected 4-dimensional manifolds, which is a hot research topic I guess. I won't work on any open problem because I'm just a stupid 3-year, not Perelman, but it will be a good opportunity to learn some of the stuff necessary to do research one day


Tags
3 years ago

→ 30 VIII 2021

not much has happened really

concentration: 4

doing topo as usual, stopped doing as much analysis, just enjoying my break from coding with abstract ideas

reading books about math became sort of a comfort thing for me. i fell in love with just sitting there and trying to imagine everything. i wish i could be payed for studying math, i would be a fucking billionaire at this point


Tags
  • bsdndprplplld
    bsdndprplplld reblogged this · 3 years ago
  • bsdndprplplld
    bsdndprplplld reblogged this · 3 years ago
bsdndprplplld - you can't comb a hairy ball
you can't comb a hairy ball

⁕ pure math undergrad ⁕ in love with anything algebraic ⁕

292 posts

Explore Tumblr Blog
Search Through Tumblr Tags