Where your favorite blogs come alive
Когда Цзюнь Яо устроился на новую работу, этот инженер-электрик не собирался создавать «зеленый» источник энергии. Но случай помог ему найти способ использовать полностью натуральный белок для превращения воды в электричество.
Яо работает в Массачусетском университете (UMass) в Амхерсте. Он использует нанопровода в разрабатываемой им электронике. Эти провода очень крошечные, каждый - всего в одну миллиардную метра (три миллиардных фута) в ширину. Но Яо с трудом набирал их в достаточном количестве для своих исследований.
Обескураженный, он рассказал о проблеме Дереку Ловли. Этот микробиолог также работает в UMass. Ловли рассказал Яо о бактериях, которые образуют нанонити белка. Чтобы выяснить, могут ли они заменить нанопроволоки, пара объединилась.
Бактерии Geobacter обитают в грязи. Ловли впервые обнаружил эти микробы более 30 лет назад. С тех пор эти микробы использовались для очистки разливов нефти и радиоактивных отходов.
Бактерии вырастают проволочные белковые нити по всей поверхности своих клеток. «Они выглядят как миниатюрные морские ежи», - говорит Яо. Когда микробы превращают пищу в энергию, они выделяют электроны. Эти электроны проходят через белковые нити, попадая в грязь на железе.
Для нового исследования Ловли удалил нанонити из миллиардов этих бактерий. Затем команда Яо зажала облако похожих на проволоку нитей между двумя маленькими золотыми металлическими пластинами. (Представьте, что вы берете горсть ниток и гладите их.) Золото служит электродами. Они вступают в контакт с неметаллической частью электрической цепи (эти белковые провода). Затем аспирант Сяомэн Лю приложил напряжение между двумя электродами. Яо сравнивает это с подключением их к батарее. Когда Лю сделал это, электричество - поток электронов - прошел через систему. Белковые «проволочки» теперь вели себя как металлические.
Лабораторное устройство помещает пленку из белковых нанопроволок между двумя золотыми электродами.
Счастливая случайность
Однажды Лю забыл включить напряжение. Тем не менее, он видел, что через устройство все равно проходит электричество. К его удивлению, белковые нанопровода создали электричество. После тестирования исследователи показали, что влажность воздуха - содержание воды - питала установку.
Взволнованные, исследователи решили проверить, насколько хорошо работает их новая система. Они начали с одного крошечного устройства. Его нижний электрод имел ширину всего 5 миллиметров (0,2 дюйма). Поверх него был слой нанопроволок толщиной 7 микрометров (что намного тоньше человеческого волоса). Сверху располагался квадратный электрод меньшего размера, по 1 миллиметру с каждой стороны.
Устройство вырабатывало электричество при всех протестированных уровнях влажности, но оно вырабатывало больше при высокой влажности. На максимальной мощности он выдавал устойчивые 0,5 вольт. Когда исследователи подключили пять устройств, они получили в пять раз больше энергии. Накрыв устройство, чтобы вода не попадала в нанопроволоки, отключите его выработку электроэнергии. Снятие крышки снова включило устройство. По словам Яо, хотя мощность одного устройства крошечная, группа из них может заряжать телефон или зажигать лампу.
Ключ к системе - небольшие промежутки между нанопроводами, называемые нанопорами. Они позволяют воде перемещаться между проводами. Больше воды собирается на стороне маленького электрода, где упаковка нанопроволоки контактирует с воздухом. Меньше собирается на стороне, где нанопроволоки соприкасаются с большим электродом. Эта разница, или градиент, вызывает накопление положительного заряда на одной стороне «проводов» и отрицательного заряда на другой. Яо говорит, что это немного похоже на то, как образуется молния. «Движение молекул воды создает разделение зарядов в облаке», - объясняет он. «В конце концов, он достигает порога, и облако разряжается», производя молнию.
Команда описала свое изобретение 27 февраля в Nature.
Энергия будущего?
По словам Яо, новое устройство может стать серьезной инновацией в области возобновляемых источников энергии. В конце концов, отмечает он, «влажность везде». Устройства очень тонкие, их можно штабелировать. В отличие от солнечных батарей, они не нуждаются в свете или для покрытия большой площади. Их можно использовать в помещении или на улице. Они даже могут стать частью мебели, сотовых телефонов и многого другого, не будучи заметными.
По словам Яо, самое приятное то, что сбор микробной проволоки не производит вредных химикатов. А когда в устройствах больше нет необходимости, золотые электроды можно использовать повторно или переработать. Нанопроволоки можно выбросить, позволяя белку разрушиться естественным путем. Это означает, что, в отличие от других видов возобновляемой энергии, по словам Яо, нет долгосрочных отходов, загрязняющих окружающую среду.
«Похоже, это важная технология», - говорит Цюаньбинь Дай. Он исследователь нанотехнологий, который не принимал участия в исследовании. Он работает в Университете Кейс Вестерн Резерв в Кливленде, штат Огайо. Он отмечает, что у многих людей есть «сотовые телефоны и носимая электроника, которые необходимо заряжать». По его словам, идея приводить их в действие из влажного воздуха очень привлекательна. Белковые нанопроволоки могут производить электроэнергию где угодно и в любое время суток. «Будет интересно увидеть, как это будет успешно реализовано», - говорит он.
Яо и Ловли уже работают над тем, чтобы это произошло. Одно из ограничений на данный момент - как быстро вырастить достаточное количество микробных нанопроволок. Но Ловли участвует. Он уже внедрил ген для создания нанопроволок в быстрорастущие бактерии.
Это одна из серии новостей о технологиях и инновациях, которая стала возможной благодаря щедрой поддержке Фонда Лемельсона.