On September 9th 1995, the legendary Playstation console launched in North America!
“This is not some fringe idea, where a few contrarian scientists are overemphasizing a small difference in the data. If both groups are correct — and no one can find a flaw in what either one has done — it might be the first clue we have in taking our next great leap in understanding the Universe. Nobel Laureate Adam Riess, perhaps the most prominent figure presently researching the cosmic distance ladder, was kind enough to record a podcast with me, discussing exactly what all of this might mean for the future of cosmology.
It’s possible that somewhere along the way, we have made a mistake somewhere. It’s possible that when we identify it, everything will fall into place just as it should, and there won’t be a controversy or a conundrum any longer. But it’s also possible that the mistake lies in our assumptions about the simplicity of the Universe, and that this discrepancy will pave the way to a deeper understanding of our fundamental cosmic truths.”
In science, if you want to know some property of the Universe, you need to devise a measurement or set of measurements you can make to reveal the quantitative answer. When it comes to the expanding Universe, we have many different methods of measuring light that fall into two independent classes: using the imprint of an early relic and using the cosmic distance ladder. These two techniques each give solid results that are mutually inconsistent: the distance ladder teams find results that are higher than the early relic teams by about 9%. Since the errors are only about 1-2% on each measurements, this has been dubbed cosmology’s biggest controversy.
But perhaps it’s not about “who is right,” but rather about “what is the Universe doing?” Perhaps it’s a clue, not a controversy. Come learn about the cutting-edge science behind this fascinating and unexpected result.
"Many erroneous statements have appeared in print relative to my discovery of the rotating magnetic field and invention of the induction motor which I was compelled to pass in silence. Great interests have waged a long and bitter contest for my patent rights; commercial animosities and professional jealousies were aroused, and I was made to suffer in more than one way. But despite of all pressure and efforts of ingenious lawyers and experts, the rulings of the courts were in support of my claims for priority in every instance without exception. The battles have been fought and forgotten, the thirty or forty patents granted to me on the alternating system have expired, I have been released of burdensome obligations and am free to speak...
"...A few words should be said in regard to the various claims for anticipation which were made upon the issuance of my patents in 1888, and in numerous suits conducted subsequently. There were three contestants for the honor, Ferraris, Schallenberger and Cabanellas. All three succumbed to grief. The opponents of my patents advanced the Ferraris claim very strongly, but any one who will peruse his little Italian pamphlet, which appeared in the spring of 1888, and compare it with the patent record filed by me seven months before, and with my paper before the American Institute of Electrical Engineers, will have no difficulty in reaching a conclusion. Irrespective of being behind me in time, Prof. Ferraris's publication concerned only my split-phase motor, and in an application for a patent by him priority was awarded to me. He never suggested any of the essential practical features which constitute my system, and in regard to the split-phase motor he was very decided in his opinion that it was of no value. Both Ferraris and Schallenberger discovered the rotation accidentally while working with a Gullard and Gibbs transformer, and had difficulty in explaining the actions. Neither of them produced a rotating field motor like mine, nor were their theories the same as my own. As to Cabanellas, the only reason for his claim is an abandoned and defective technical document. Some over-zealous friends have interpreted a United States patent granted to Bradley as a contemporary record, but there is no foundation whatever for such a claim. The original application only described a generator with two circuits which were provided for the sole purpose of increasing the output. There was not much novelty in the idea, since a number of such machines existed at that time. To say that these machines were anticipations of my rotary transformer is wholly unjustified. They might have served as one of the elements in my system of transformation, but were nothing more than dynamos with two circuits constructed with other ends in view and in utter ignorance of the new and wonderful phenomena revealed through my discovery."
“Some Personal Recollections.” Scientific American, June 5, 1915.
Okay so I just finished my first semester in university and lets just say I’ve got to change my whole learning/studying style to be able to survive here. Here are some of the things I’ve learnt to do and will be doing in second semester:
1. Start backwards:
I highschool, you try to learn the subject by going to class, listening to the teacher, then going home, reading the textbook, then doing the homework, then making notes, then studying for the final. In engineering, you have to do this backwards: You will realize that you are going to be basically teaching yourself the content one way or another soon before the finals, so better start now. First, go through the past exams and past papers - make a list of all the major topics covered (example: if in an electrical circuits course, a question on a past final exam is “find the equivalent circuit using thevenin’s theorem” then write Thevenin’s theorem as a topic to be learned). Then go on youtube and find videos that explain each of these topics to you and make rough notes on these topics. (Reblog if you want me to make a master list of all the youtubers that teach engineering really well). Then go through he textbook and find sample questions not he theorem/topic you learnt off of youtube, and solve them. Then write your doubts in a notebook. Then go to class and have two notebooks open : one where you are taking notes of what the prof is saying, and one which has your practice problems solved, and see if the prof clarifies your doubts in the lecture. The lecture should be review of what you learnt at home!!!! Then, after class go to the prof and clarify any doubts. Then go home and make final notes on the topic. I like to make notes on cue cards (more on this later). Then go back to the final exam and see if you can solve the problem.
2. Make cue cards:
I like to get index cards and write a short note on how to solve each type of question I am likely to see on a final exam on each question card. Example: one cue card for “how to find resistance using wheatstone bridge” . I link the cue cards with a clip and its easier to carry the around and study.
3. Get pretty notebooks and organize your stationary. Its easier to stay focused when everything is pretty.
Io - Jupiter’s volcanic moon
Europa - Jupiter’s icy moon
Ganymede - Jupiter’s (and the solar system’s) largest moon
Callisto - Jupiter’s heavily cratered moon
Made using: Celestia, Screen2Gif & GIMP Based on: @spaceplasma‘s solar system gifs Profile sources: http://solarsystem.nasa.gov/planets, http://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html