Here's another black and white picture taken in H-alpha, this time of the Pacman nebula (NGC 281). I don't have a lot to say about this one, it's a hydrogen gas cloud similar to the gas cloud around Sadr that I previously photographed. An interesting thing about it thought, is its position, it's about 6 500 light years from us and about 1000 light years above the galactic plane, making it a prominent target to study star formation. The cluster of stars at the center of the nebulas is a good example of those newly borne stars as it is only about 3.5 million years old.
There might not be sound in space, but there is quite a lot to listen to in the radio frequencies (especially when it comes to the planets of the solar system).
(the full article : https://www.jpl.nasa.gov/news/nasas-juno-spacecraft-enters-jupiters-magnetic-field ) Some ''similar'' sounds are also present on earth with for example the reverberation if radio waves emitted by lightning.
I'm trying to find a clean, concise, factual video of pulsar pulses but the top results on youtube are all fake clickbait bullshit. Where are the videos from professor so-and-so with 10 subscribers of simple black and white graphs.
(this page has what I'm looking for but afaik none of these videos are on youtube)
This is M51, also known as the Whirlpool Galaxy it is a pair a galaxy currently interacting together. If you look at the two arms of the spiral, you will see that the one on the left is somewhat deformed (near the other galaxy) this is due to the gravitational interaction between the two galaxies. Those interaction are also the reason why the left galaxy (NGC 5195) is this irregular. Some of the models have proposed that both galaxies have passed through each other at some point in the past. In the future both galaxie will slowly fuse together, but this will take at least a few hundred million years. Multiple other interacting galaxies also exist, such as the butterfly galaxies or the antenna galaxies.
This photo was supposed to be a test of my new equatorial mount but the result was WAY BETTER than expected so here you go (the post-treatment of the photos is not the best ever but I had to work with a limited amount a data). I will probably post more photos this summer since I now have access to better skys and a better mount than in Munich (If the weather complies).
Picture of IC59 and IC63. This is a pair of nebula located near the star γ Cassiopeia, the big star at the bottom, which is responsible for making the nebula glow. Both nebula are composed of ionise hydrogen responsible for the red colour (especially on IC63) and colder dust/gas responsible for the blue colour (most visible on IC59). γ Cassiopeia can make taking photos of those nebula difficult due to the halos it produces, I did my best to limit its impact during processing, but there is still a faint blue halo around it. IC63 is also known as the Ghost of Cassiopeia due to its shape, it was discovered in 1893 by the German astronomer Max Wolf.
Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera. 12x300s image for each filter (LRGBHa), total imaging time 5h, stacking and processing done in PixInsight. Details of both objects: IC63
IC59
Listen to the sound of wikipedia
This is a way to listen to changes to wikipedia. You are literally listening to knowledge being added to the world.
Pluck sounds are an addition, strings are subtractions, and the pitch says how how big the edit is. My heart shudders at this I love it so much.
Photo of the NGC 2237, the Rosette nebula and the star cluster inside it, NGC 2244.
The star cluster, which is estimated to be about 5 million years old, is responsible for the ionisation of the surrounding gas. The mass of the nebula is estimated to be about 10 000 times the mass of our sun, which is relatively massive for a diffuse nebula.
This image uses a SHO palette, I quite like the colours I manage to get, both as the normal and starless images.
I also tried using the Foraxx palette, I think it's a bit less interesting visually, but the dark dust structures seam a bit more visible.
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera ZWO LRGB filters and Baader 6.5nm SHO filter. 5x120s image for each colour filter (RGB), 15x300s for the Ha filter 20x300s for the SII filter and 18x300s for the OIII filter, total imaging time 4h 25min, stacking and processing done in PixInsight.)
Photo a few galaxies, M81 / bode's galaxy (centre), M82/the cigar galaxy (left) and NGC 3077 (right)
In addition to those three galaxies, there are many other (much) smaller ones hidden among the stars (a few examples):
The red-ish filament visible around M82 are ionised hydrogen gas and dust pushed outwards by galactic-superwind
Those are tough to be a combination of solar winds created by young stars and the shockwaves of frequent supernovas. They mostly occur in starburst galaxy a type of galaxies that experience heightened stars formation generally due to recent gravitational interaction with other galaxies, in the case of M82 the trigger is most likely its neighbour M81.
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera ZWO LRGB filters and Baader 6.5nm Ha filter. 12x180s image for each colour filter (RGB), 6x300s for the Ha filter, total imaging time 2h 54min, stacking and processing done in PixInsight.)
I think one big reason why we don't consider the stars as important as before (not even pop-astrology anymore cares about the stars or the sky on itself, just the signs deprived of context) is because of light pollution.
For most of human history the sky looked between 1-3, 4 at most. And then all of a sudden with electrification it was gone (I'm lucky if I get 6 in my small city). The first time I saw the Milky Way fully as a kid was a spiritual experience, I was almost scared on how BRIGHT it was, it felt like someone was looking back at me. You don't get that at all with modern light pollution.
When most people talk about stargazing nowadays they think about watching about a couple of bright dots. The stars are really, really not like that. The unpolluted night sky is a festival of fireworks. There is nothing like it.
This is a picture of the hydrogen and dust cloud surrounding the star Sadr (the bright white dot near the center) also known as IC 1318. The bright parts represent hydrogen clouds and the dark parts dust clouds. Those types of clouds are the birthplace of new stars. This particular photo is in black and white because it was made by using a filter that lets only the light emitted by ionised hydrogen (the H alpha spectral line) pass through it. This increases the visibility of the hydrogen clouds. Since this light is at 656 nm, it would appear bright red if coloured. Together with H beta (496 nm) also from hydrogen and O III (around 500 nm) from oxygen both cyan in color, they represent the majority of light emitted by gas clouds. So in conclusion if you were able to see this gas cloud directly it would appear a reddish-magenta color (H alpha being the dominant emission).
Finished working on my photo of the hors head.
Technically speaking the Horse Head is only the dark nebula, is bright hydrogen cloud behind it is known as IC434 and the second nebula (bottom left) is the flame nebula. The bright star in the center left is Zeta Orionis also known as Alnitak one of the three stars of Orion's Belt. IC434 primary ionisation source is the multiple star system Sigma Orionis (a bit above the frame), the hydrogen cloud being mostly ionise by the UV coming from those blue giant stars. The streaks visible in the nebulosity are mostly likely due to magnetic field within.
The Flame nebula's ionisation source is hidden behind it's dust cloud and is most likely part of a star cluster that Is only reviled using IR and X-ray imaging.
This photo appears mostly blue/teal wear-as most photos of this nebula are red(ish) this is because this nebula emits most of it's light in the H-alpha (656 nm) and S-II (around 672 nm) wavelength both of which are red, so in classic RGB images the nebula appears red. Initially I thought of doing an SHO image (were red is SII emission, green is H-alpha and blue is OIII) but this nebula lacks OIII emission (around 500 nm), so instead a used a modified SHH palette More precisely, I used SII for the red, a combination of both Ha and SII (0.8Ha + 0.2SII) for green and Ha for blue. The stars were taken separately in RGB and added back to the SHH image.
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera and Baader 6.5nm SHO filter. 5x120s image for each colour filter (RGB), 22x300s for the Ha filter and 32x300s for the SII filter, total imaging time 5h, stacking and processing done in PixInsight.)
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts