Redplanet44 - Untitled

Unconventional superconductor may be used to create quantum computers of the future | nwn
With their insensitivity to decoherence what are known as Majorana particles could become stable building blocks of a quantum computer. The problem is that they...

More Posts from Redplanet44 and Others

6 years ago
Using 3D Printers In Healthcare
Here is a list of several benefits to using 3D printers in the healthcare sector. Click here to read the article. Source: www.scitecheuropa.eu Phot
6 years ago

@neysastudies

Toxic ‘zombie’ Cells Seen For 1st Time In Alzheimer’s

Toxic ‘zombie’ cells seen for 1st time in Alzheimer’s

A type of cellular stress known to be involved in cancer and aging has now been implicated, for the first time, in Alzheimer’s disease. UT Health San Antonio faculty researchers reported the discovery in the journal Aging Cell.

The team found that the stress, called cellular senescence, is associated with harmful tau protein tangles that are a hallmark of 20 human brain diseases, including Alzheimer’s and traumatic brain injury. The researchers identified senescent cells in postmortem brain tissue from Alzheimer’s patients and then found them in postmortem tissue from another brain disease, progressive supranuclear palsy.

Cellular senescence allows the stressed cell to survive, but the cell may become like a zombie, functioning abnormally and secreting substances that kill cells around it. “When cells enter this stage, they change their genetic programming and become pro-inflammatory and toxic,” said study senior author Miranda E. Orr, Ph.D., VA research health scientist at the South Texas Veterans Health Care System, faculty member of the Sam and Ann Barshop Institute for Longevity and Aging Studies, and instructor of pharmacology at UT Health San Antonio. “Their existence means the death of surrounding tissue.”

Improvements in brain structure and function

The team confirmed the discovery in four types of mice that model Alzheimer’s disease. The researchers then used a combination of drugs to clear senescent cells from the brains of middle-aged Alzheimer’s mice. Such drugs are called senolytics. The drugs used by the San Antonio researchers are dasatinib, a chemotherapy medication that is U.S. Food and Drug Administration-approved to treat leukemia, and quercetin, a natural flavonoid compound found in fruits, vegetables and some beverages such as tea.

After three months of treatment, the findings were exciting. “The mice were 20 months old and had advanced brain disease when we started the therapy,” Dr. Orr said. “After clearing the senescent cells, we saw improvements in brain structure and function. This was observed on brain MRI studies (magnetic resonance imaging) and postmortem histology studies of cell structure. The treatment seems to have stopped the disease in its tracks.”

“The fact we were able to treat very old mice and see improvement gives us hope that this treatment might work in human patients even after they exhibit symptoms of a brain disease,” said Nicolas Musi, M.D., study first author, who is Professor of Medicine and Director of the Sam and Ann Barshop Institute at UT Health San Antonio. He also directs the VA-sponsored Geriatric Research, Education and Clinical Center (GRECC) in the South Texas Veterans Health Care System.

Typically, in testing an intervention in Alzheimer’s mice, the therapy only works if mice are treated before the disease starts, Dr. Musi said.

Tau protein accumulation is responsible

In Alzheimer’s disease, patient brain tissue accumulates tau protein tangles as well as another protein deposit called amyloid beta plaques. The team found that tau accumulation was responsible for cell senescence. Researchers compared Alzheimer’s mice that had only tau tangles with mice that had only amyloid beta plaques. Senescence was identified only in the mice with tau tangles.

In other studies to confirm this, reducing tau genetically also reduced senescence. The reverse also held true. Increasing tau genetically increased senescence.

Importantly, the drug combination reduced not only cell senescence but also tau tangles in the Alzheimer’s mice. This is a drug treatment that does not specifically target tau, but it effectively reduced the tangle pathology, Dr. Orr said.

“When we looked at their brains three months later, we found that the brains had deteriorated less than mice that received placebo control treatment,” she said. “We don’t think brain cells actually grew back, but there was less loss of neurons, less brain ventricle enlargement, improved cerebral blood flow and a decrease in the tau tangles. These drugs were able to clear the tau pathology.”

Potentially a therapy to be tested in humans

“This is the first of what we anticipate will be many studies to better understand this process,” Dr. Musi said. “Because these drugs are approved for other uses in humans, we think a logical next step would be to start pilot studies in people.”

The drugs specifically target—and therefore only kill—the senescent cells. Because the drugs have a short half-life, they are cleared quickly by the body and no side effects were observed.

Dasatinib is an oral medication. The mice were treated with the combination every other week. “So in the three months of treatment, they only received the drug six times,” Dr. Orr said. “The drug goes in, does its job and is cleared. Senescent cells come back with time, but we expect that it would be possible to take the drug again and be cleared out again. That’s a huge benefit—it wouldn’t be a drug that people would have to take every day.”

Dosage and frequency in humans would need to be determined in clinical trials, she said.

Next, the researchers will study whether cell senescence is present in traumatic brain injury. TBI is a brain injury that develops tau protein accumulation and is a significant cause of disability in both military and non-military settings, Dr. Orr said.

6 years ago
Gene discovery unlocks mysteries to our immunity
"It's exciting to consider that C6 has existed for more than 500 million years, preserved and passed down from simple organisms all the way to humans. But only now are we gaining insights into its importance."

Australia’s national science agency CSIRO has identified a new gene that plays a critical role in regulating the body’s immune response to infection and disease.

The discovery could lead to the development of new treatments for influenza, arthritis and even cancer.

The gene, called C6orf106 or “C6”, controls the production of proteins involved in infectious diseases, cancer and diabetes. The gene has existed for 500 million years, but its potential is only now understood.

Continue Reading.

7 years ago

Two most important phenomens to live for: coffee and ISS in the space

Coffee in Space: Keeping Crew Members Grounded in Flight

Happy National Coffee Day, coffee lovers! 

On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.

image

Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.

image

The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!

image

The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.

image

On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.

image

The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.

image
image

Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts. 

image

Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.

image

We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

7 years ago

Eric Magnus Lensherr-sphere

Magnetospheres: How Do They Work?

The sun, Earth, and many other planets are surrounded by giant magnetic bubbles.

image

Space may seem empty, but it’s actually a dynamic place, dominated by invisible forces, including those created by magnetic fields.  Magnetospheres – the areas around planets and stars dominated by their magnetic fields – are found throughout our solar system. They deflect high-energy, charged particles called cosmic rays that are mostly spewed out by the sun, but can also come from interstellar space. Along with atmospheres, they help protect the planets’ surfaces from this harmful radiation.

It’s possible that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, so finding magnetospheres around other planets is a big step toward determining if they could support life.

But not all magnetospheres are created equal – even in our own backyard, not all planets in our solar system have a magnetic field, and the ones we have observed are all surprisingly different.

image

Earth’s magnetosphere is created by the constantly moving molten metal inside Earth. This invisible “force field” around our planet has an ice cream cone-like shape, with a rounded front and a long, trailing tail that faces away from the sun. The magnetosphere is shaped that way because of the constant pressure from the solar wind and magnetic fields on the sun-facing side.

image

Earth’s magnetosphere deflects most charged particles away from our planet – but some do become trapped in the magnetic field and create auroras when they rain down into the atmosphere.

image

We have several missions that study Earth’s magnetosphere – including the Magnetospheric Multiscale mission, Van Allen Probes, and Time History of Events and Macroscale Interactions during Substorms (also known as THEMIS) – along with a host of other satellites that study other aspects of the sun-Earth connection.

image
image

Mercury, with a substantial iron-rich core, has a magnetic field that is only about 1% as strong as Earth’s. It is thought that the planet’s magnetosphere is stifled by the intense solar wind, limiting its strength, although even without this effect, it still would not be as strong as Earth’s. The MESSENGER satellite orbited Mercury from 2011 to 2015, helping us understand our tiny terrestrial neighbor.

image
image

After the sun, Jupiter has by far the biggest magnetosphere in our solar system – it stretches about 12 million miles from east to west, almost 15 times the width of the sun. (Earth’s, on the other hand, could easily fit inside the sun.) Jupiter does not have a molten metal core like Earth; instead, its magnetic field is created by a core of compressed liquid metallic hydrogen.

image

One of Jupiter’s moons, Io, has intense volcanic activity that spews particles into Jupiter’s magnetosphere. These particles create intense radiation belts and the large auroras around Jupiter’s poles.

image

Ganymede, Jupiter’s largest moon, also has its own magnetic field and magnetosphere – making it the only moon with one. Its weak field, nestled in Jupiter’s enormous shell, scarcely ruffles the planet’s magnetic field.

Our Juno mission orbits inside the Jovian magnetosphere sending back observations so we can better understand this region. Previous observations have been received from Pioneers 10 and 11, Voyagers 1 and 2, Ulysses, Galileo and Cassini in their flybys and orbits around Jupiter.

image

Saturn’s moon Enceladus transforms the shape of its magnetosphere. Active geysers on the moon’s south pole eject oxygen and water molecules into the space around the planet. These particles, much like Io’s volcanic emissions at Jupiter, generate the auroras around the planet’s poles. Our Cassini mission studies Saturn’s magnetic field and auroras, as well as its moon Enceladus.

image
image

Uranus’ magnetosphere wasn’t discovered until 1986 when data from Voyager 2’s flyby revealed weak, variable radio emissions. Uranus’ magnetic field and rotation axis are out of alignment by 59 degrees, unlike Earth’s, whose magnetic field and rotation axis differ by only 11 degrees. On top of that, the magnetic field axis does not go through the center of the planet, so the strength of the magnetic field varies dramatically across the surface. This misalignment also means that Uranus’ magnetotail – the part of the magnetosphere that trails away from the sun – is twisted into a long corkscrew.

image
image

Neptune’s magnetosphere is also tilted from its rotation axis, but only by 47. Just like on Uranus, Neptune’s magnetic field strength varies across the planet. This also means that auroras can be seen away from the planet’s poles – not just at high latitudes, like on Earth, Jupiter and Saturn.

image

Does Every Planet Have a Magnetosphere?

Neither Venus nor Mars have global magnetic fields, although the interaction of the solar wind with their atmospheres does produce what scientists call an “induced magnetosphere.” Around these planets, the atmosphere deflects the solar wind particles, causing the solar wind’s magnetic field to wrap around the planet in a shape similar to Earth’s magnetosphere.

image

What About Beyond Our Solar System?

Outside of our solar system, auroras, which indicate the presence of a magnetosphere, have been spotted on brown dwarfs – objects that are bigger than planets but smaller than stars.

There’s also evidence to suggest that some giant exoplanets have magnetospheres. As scientists now believe that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, finding magnetospheres around exoplanets is a big step in finding habitable worlds.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

7 years ago

Solar System 10 Things to Know: Planetary Atmospheres

Every time you take a breath of fresh air, it’s easy to forget you can safely do so because of Earth’s atmosphere. Life on Earth could not exist without that protective cover that keeps us warm, allows us to breathe and protects us from harmful radiation—among other things.

What makes Earth’s atmosphere special, and how do other planets’ atmospheres compare? Here are 10 tidbits:

1. On Earth, we live in the troposphere, the closest atmospheric layer to Earth’s surface. “Tropos” means “change,” and the name reflects our constantly changing weather and mixture of gases. 

Solar System 10 Things To Know: Planetary Atmospheres

It’s 5 to 9 miles (8 to 14 kilometers) thick, depending on where you are on Earth, and it’s the densest layer of atmosphere. When we breathe, we’re taking in an air mixture of about 78 percent nitrogen, 21 percent oxygen and 1 percent argon, water vapor and carbon dioxide. More on Earth’s atmosphere›

Solar System 10 Things To Know: Planetary Atmospheres

2. Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the Red Planet’s low atmospheric pressure, and with little methane or water vapor to reinforce the weak greenhouse effect (warming that results when the atmosphere traps heat radiating from the planet toward space), Mars’ surface remains quite cold, the average surface temperature being about -82 degrees Fahrenheit (minus 63 degrees Celsius). More on the greenhouse effect›

Solar System 10 Things To Know: Planetary Atmospheres

3. Venus’ atmosphere, like Mars’, is nearly all carbon dioxide. However, Venus has about 154,000 times more carbon dioxide in its atmosphere than Earth (and about 19,000 times more than Mars does), producing a runaway greenhouse effect and a surface temperature hot enough to melt lead. A runaway greenhouse effect is when a planet’s atmosphere and surface temperature keep increasing until the surface gets so hot that its oceans boil away. More on the greenhouse effect›

Solar System 10 Things To Know: Planetary Atmospheres

4. Jupiter likely has three distinct cloud layers (composed of ammonia, ammonium hydrosulfide and water) in its “skies” that, taken together, span an altitude range of about 44 miles (71 kilometers). The planet’s fast rotation—spinning once every 10 hours—creates strong jet streams, separating its clouds into dark belts and bright zones wrapping around the circumference of the planet. More on Jupiter›

Solar System 10 Things To Know: Planetary Atmospheres

5. Saturn’s atmosphere—where our Cassini spacecraft ended its 13 extraordinary years of exploration of the planet—has a few unusual features. Its winds are among the fastest in the solar system, reaching speeds of 1,118 miles (1,800 kilometers) per hour. Saturn may be the only planet in our solar system with a warm polar vortex (a mass of swirling atmospheric gas around the pole) at both the North and South poles. Also, the vortices have “eye-wall clouds,” making them hurricane-like systems like those on Earth.

Another uniquely striking feature is a hexagon-shaped jet streamencircling the North Pole. In addition, about every 20 to 30 Earth years, Saturn hosts a megastorm (a great storm that can last many months). More on Saturn›

Solar System 10 Things To Know: Planetary Atmospheres

6. Uranus gets its signature blue-green color from the cold methane gas in its atmosphere and a lack of high clouds. The planet’s minimum troposphere temperature is 49 Kelvin (minus 224.2 degrees Celsius), making it even colder than Neptune in some places. Its winds move backward at the equator, blowing against the planet’s rotation. Closer to the poles, winds shift forward and flow with the planet’s rotation. More on Uranus›

Solar System 10 Things To Know: Planetary Atmospheres

7. Neptune is the windiest planet in our solar system. Despite its great distance and low energy input from the Sun, wind speeds at Neptune surpass 1,200 miles per hour (2,000 kilometers per hour), making them three times stronger than Jupiter’s and nine times stronger than Earth’s. Even Earth’s most powerful winds hit only about 250 miles per hour (400 kilometers per hour). Also, Neptune’s atmosphere is blue for the very same reasons as Uranus’ atmosphere. More on Neptune›

Solar System 10 Things To Know: Planetary Atmospheres

8. WASP-39b, a hot, bloated, Saturn-like exoplanet (planet outside of our solar system) some 700 light-years away, apparently has a lot of water in its atmosphere. In fact, scientists estimate that it has about three times as much water as Saturn does. More on this exoplanet›

Solar System 10 Things To Know: Planetary Atmospheres

9. A weather forecast on “hot Jupiters”—blistering, Jupiter-like exoplanets that orbit very close to their stars—might mention cloudy nights and sunny days, with highs of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin). Their cloud composition depends on their temperature, and studies suggest that the clouds are unevenly distributed. More on these exoplanets›

Solar System 10 Things To Know: Planetary Atmospheres

10. 55 Cancri e, a “super Earth” exoplanet (a planet outside of our solar system with a diameter between Earth’s and Neptune’s) that may be covered in lava, likely has an atmosphere containing nitrogen, water and even oxygen–molecules found in our atmosphere–but with much higher temperatures throughout. Orbiting so close to its host star, the planet could not maintain liquid water and likely would not be able to support life. More on this exoplanet›

Read the full version of this week’s Solar System 10 Things to Know HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

7 years ago

The end of heartless b*tches

Swiss scientists just 3D printed an artificial heart that beats like the real thing
Scientists at Switzerland’s ETH Zurich have used 3D printing to create a functional beating heart made of silicone. Here's why.

This realistic 3D-printed silicon heart could help people in need of heart transplants when there are not enough donors.

6 years ago

““One of the holy grails of biomaterials research has been working out a way to get skin to grow onto and attach to metals and plastics without the risk of infection. It looks like this design and technique may have solved the problem,” says Dr Stynes, who is researching his PhD at the University of Melbourne. “It could pave the way for fully implantable robotics, prosthetics, catheters, intravenous lines, and the reconstruction of surgical defects with artificial materials.” Professor Richard Page, Director of Orthopaedics and the Centre of Orthopaedic Research and Education at Barwon Health and Deakin University, said the ability of the scaffold to make the skin think it was growing on other skin is potentially a major finding.”

— Breaking the Skin Barrier Can Lead to Breakthroughs in Robotics to Human Interface

7 years ago
‘Junk’ DNA Plays Crucial Role In Holding Genome Together: Study

‘Junk’ DNA Plays Crucial Role in Holding Genome Together: Study

Jagannathan et al propose that chromocenter and satellite DNA serves a fundamental role in encapsulating the full complement…more Image credit: Lisichik.

7 years ago

A new study has revealed that compounds present in the Martian soil can wipe out whole bacterial cultures within minutes.

Researchers have had their suspicions over whether microorganisms can actually survive on the surface of the Red Planet, and now lab tests are spelling doom for any potential little green bacteria. And yeah, growing potatoes on Mars might be more difficult than we thought.

The problem here lies with perchlorates - chlorine-containing chemical compounds that we first detected on Mars back in 2008. These salty compounds are also what makes water on the Martian surface stay liquid, essentially turning it into brine.

Perchlorates are considered toxic for people, but they don’t necessarily pose a problem for microbes. And because they keep surface water liquid, on Mars the presence of these compounds could even be beneficial for life - or so we thought.

Researchers from the University of Edinburgh have now confirmed that when you pair the compounds with intense ultraviolet (UV) light exposure, things become grim for any life forms.

Continue Reading.

  • kenya-kookie
    kenya-kookie liked this · 7 years ago
  • shinobiironman
    shinobiironman liked this · 7 years ago
  • nerdybrainmanchild-blog
    nerdybrainmanchild-blog reblogged this · 7 years ago
  • daddy-pigbenis
    daddy-pigbenis liked this · 7 years ago
  • wannabe-suburban-dad-blog
    wannabe-suburban-dad-blog liked this · 7 years ago
  • invaderkloe
    invaderkloe liked this · 7 years ago
  • felix-reblogs
    felix-reblogs reblogged this · 7 years ago
  • pethuf
    pethuf liked this · 7 years ago
  • strkid
    strkid reblogged this · 7 years ago
  • strkid
    strkid liked this · 7 years ago
  • tonhg
    tonhg liked this · 7 years ago
  • electrical-dissonance
    electrical-dissonance reblogged this · 7 years ago
  • ric-ard
    ric-ard reblogged this · 7 years ago
  • rncanyontours
    rncanyontours liked this · 7 years ago
  • ilikethewayyoumove
    ilikethewayyoumove reblogged this · 7 years ago
  • demonizer0
    demonizer0 liked this · 7 years ago
  • nayrnrj26
    nayrnrj26 liked this · 7 years ago
  • horrichus
    horrichus liked this · 7 years ago
  • boyjadzia
    boyjadzia liked this · 7 years ago
  • maeganbobaegan
    maeganbobaegan liked this · 7 years ago
  • regicide1997
    regicide1997 liked this · 7 years ago
  • friskwink
    friskwink liked this · 7 years ago
  • anxvu
    anxvu reblogged this · 7 years ago
  • anxvu
    anxvu liked this · 7 years ago
  • materialsscienceandengineering
    materialsscienceandengineering reblogged this · 7 years ago
  • slyphvoid
    slyphvoid reblogged this · 7 years ago
  • ucmehere2-blog
    ucmehere2-blog liked this · 7 years ago
  • gloriousinternetpaper
    gloriousinternetpaper reblogged this · 7 years ago
  • kellygreeny
    kellygreeny liked this · 7 years ago
  • redplanet44
    redplanet44 reblogged this · 7 years ago
  • bluegalaxyblue
    bluegalaxyblue liked this · 7 years ago
  • sciencenerd4-blog
    sciencenerd4-blog liked this · 7 years ago
  • abrarmisk
    abrarmisk reblogged this · 7 years ago
  • justmetoo2-blog
    justmetoo2-blog liked this · 7 years ago
  • substrfuge
    substrfuge liked this · 7 years ago
  • zealous--collection-blog
    zealous--collection-blog liked this · 7 years ago
  • pepo-conocido
    pepo-conocido liked this · 7 years ago
  • vpng
    vpng reblogged this · 7 years ago
  • ksuderekc
    ksuderekc liked this · 7 years ago
redplanet44 - Untitled
Untitled

103 posts

Explore Tumblr Blog
Search Through Tumblr Tags