October 28th is International Observe the Moon Night, a worldwide, public celebration of lunar science and exploration held annually since 2010 thanks to our Lunar Reconnaissance Orbiter (LRO) mission team and partners. One day each year, everyone on Earth is invited to observe and learn about the Moon together, and to celebrate the cultural and personal connections we all have with our planet’s nearest neighbor.
1. There has been a spacecraft there for 100 lunar days
In October 2017, LRO celebrates one hundred days of collecting scientific data at the Moon. One hundred Moon days. From our perspective on Earth, one lunar day is one full phase cycle, or about 29.5 Earth days. That’s 100 opportunities to observe changes from night to day, photograph the surface at different Sun angles, measure rising and falling temperatures, study the way certain chemicals react to the daily light and temperature cycle, and increase our understanding of the Moon as a dynamic place.
2. You can still see the paths left by Apollo astronauts’ boot prints and rovers
Much of the lunar surface is covered in very fine dust. When Apollo astronauts landed on the Moon, the descent stage engine disturbed the dust and produced a distinct bright halo around the lunar module. As astronauts moved around, their tracks exposed the darker soil underneath, creating distinct trails that we know, thanks to LRO, are still visible today. The Moon has no atmosphere, so there is no wind to wipe away these tracks.
3. The Moon has tattoos!
Observations from LRO show mysterious patterns of light and dark that are unique to the Moon. These lunar swirls look painted on, like the Moon got ‘inked.’ Lunar swirls, like these imaged at Reiner Gamma by LRO, are found at more than 100 locations across the lunar surface. Lunar swirls can be tens of miles across and appear in groups or as isolated features.
Researchers think these patterns form in places where there’s still a remnant of the Moon’s magnetic field. There are still many competing theories about how swirls form, but the primary idea is that the local magnetic field deflects the energetic particles in the solar wind, so there’s not as much weathering of the surface. The magnetically shielded areas would then look brighter than everything around them.
4. There were once active volcanoes, that shaped what we see now
Early astronomers named the large dark spots that we see on the near side of the Moon “maria,” Latin for “seas,” because that’s what they thought they were. We now know that the dark spots are cooled lava, called basalt, formed from ancient volcanic eruptions. The Moon’s volcanoes are no longer active, but their past shapes the Moon that we see today. The Moon doesn’t have large volcanoes like ones in Hawaii, but it does have smaller cones and domes.
Other small features derived from volcanic activity include rivers of dried lava flows, like the ones visible in this image of Vallis Schroteri taken by LRO, and dark areas formed from eruptive volcanoes that spewed fire. For many years, scientists thought the Moon’s volcanic activity died out long ago, but there’s some evidence for relatively “young” volcanism, suggesting that the activity gradually slowed down instead of stopping abruptly.
5. Anyone, anywhere can participate in International Observe the Moon Night.
How to celebrate International Observe the Moon Night
Attend an event – See where events are happening near you by visiting http://observethemoonnight.org
Host an event – Call up your neighbors and friends and head outdoors – no special equipment is needed. Let us know how you celebrated by registering your event!
Don’t let cloudy weather get you down! Observe the Moon in a variety of ways from the comfort of indoors – View stunning lunar vistas through images and videos, or explore the Moon on your own with QuickMap or Moon Trek
Join the worldwide conversation with #ObserveTheMoon on Twitter, Instagram and Facebook
For regular Moon-related facts, updates and science, follow @NASAMoon on Twitter
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
ESFJ:
ESFP:
ESTJ:
ESTP:
ENFJ:
ENFP:
ENTJ:
ENTP:
ISFJ:
ISFP:
ISTJ:
ISTP:
INFJ:
INFP:
INTJ:
INTP:
A new study has revealed that compounds present in the Martian soil can wipe out whole bacterial cultures within minutes.
Researchers have had their suspicions over whether microorganisms can actually survive on the surface of the Red Planet, and now lab tests are spelling doom for any potential little green bacteria. And yeah, growing potatoes on Mars might be more difficult than we thought.
The problem here lies with perchlorates - chlorine-containing chemical compounds that we first detected on Mars back in 2008. These salty compounds are also what makes water on the Martian surface stay liquid, essentially turning it into brine.
Perchlorates are considered toxic for people, but they don’t necessarily pose a problem for microbes. And because they keep surface water liquid, on Mars the presence of these compounds could even be beneficial for life - or so we thought.
Researchers from the University of Edinburgh have now confirmed that when you pair the compounds with intense ultraviolet (UV) light exposure, things become grim for any life forms.
Continue Reading.
Tyson fights like Tyson with words
8.28.17
Flame Nebula in Orion - For more images of the cosmos Click Here
Sound metal, don't you think?
HRL Laboratories has made a breakthrough in metallurgy with the announcement that researchers at the famous facility have developed a technique for successfully 3D printing high-strength aluminum alloys—including types Al7075 and Al6061—that opens the door to additive manufacturing of engineering-relevant alloys. These alloys are very desirable for aircraft and automobile parts and have been among thousands that were not amenable to additive manufacturing—3D printing—a difficulty that has been solved by the HRL researchers. An added benefit is that their method can be applied to additional alloy families such as high-strength steels and nickel-based superalloys difficult to process currently in additive manufacturing.
“We’re using a 70-year-old nucleation theory to solve a 100-year-old problem with a 21st century machine,” said Hunter Martin, who co-led the team with Brennan Yahata. Both are engineers in the HRL’s Sensors and Materials Laboratory and PhD students at University of California, Santa Barbara studying with Professor Tresa Pollock, a co-author on the study. Their paper 3D printing of high-strength aluminum alloys was published in the September 21, 2017 issue of Nature.
Additive manufacturing of metals typically begins with alloy powders that are applied in thin layers and heated with a laser or other direct heat source to melt and solidify the layers. Normally, if high-strength unweldable aluminum alloys such as Al7075 or AL6061 are used, the resulting parts suffer severe hot cracking—a condition that renders a metal part able to be pulled apart like a flaky biscuit.
Read more.
It's nap time little martian
Today was Opportunity Rover’s 5,000 Martian Day! Yay! Just in case you don’t know Opportunity, here are a few little facts.
First, The opportunity Rover was launched on July 7th of 2003. It was lauched with another rover named Spirit. They landed on Mars in Janurary of 2004. Unfortunately Spirit stopped working in 2010 , but Opportunity is still alive and helping us understand Mars.
Initially Opportuinity was only supposed to be around for 90 Earth days, but instead it’s gotten tons of extensions and is still collecting data today.
Opportunity is run by a solar panel and is almost 5 feet tall. The solar panels hold enough energy for 14 hours, and the batteries help store energy for use at night. All of that helps to keep our little robot running. He currently holds the record for longest distance travelled “off-world.”
As of right now Opportunity is “hibernating” through the Martian winter and will wake up again in March (yay!) to help with more scientific discoveries.
Happy 5,000 Martian Day Opportunity! And thanks for everything you do <3
Metal Rover Model Kit
Opportunity Poster
And also math is a common language for spanish and chinese people. The original esperanto :)
Cooking With Neil DeGrasse Tyson
A tiny layer of graphene flakes becomes a deadly weapon and kills bacteria, stopping infections during procedures such as implant surgery
A tiny layer of graphene flakes becomes a deadly weapon and kills bacteria, stopping infections during procedures such as implant surgery. This is the findings of new research from Chalmers University of Technology, Sweden, recently published in the scientific journal Advanced Materials Interfaces.
Operations for surgical implants, such as hip and knee replacements or dental implants, have increased in recent years. However, in such procedures, there is always a risk of bacterial infection. In the worst case scenario, this can cause the implant to not attach to the skeleton, meaning it must be removed.
Bacteria travel around in fluids, such as blood, looking for a surface to cling on to. Once in place, they start to grow and propagate, forming a protective layer, known as a biofilm.
A research team at Chalmers has now shown that a layer of vertical graphene flakes forms a protective surface that makes it impossible for bacteria to attach. Instead, bacteria are sliced apart by the sharp graphene flakes and killed. Coating implants with a layer of graphene flakes can therefore help protect the patient against infection, eliminate the need for antibiotic treatment, and reduce the risk of implant rejection. The osseointegration – the process by which the bone structure grow to attach the implant – is not disturbed. In fact, the graphene has been shown to benefit the bone cells.
Read more.
Don't drink dihydrogen monoxide. Everybody dies who does!
Dihydrogen Monoxide Bottle