Hey ISS, I'm looking at you!
How to Identify that Light in the Sky [750 × 702] Visit http://spaceviewsandbeyond.blogspot.com/2017/09/how-to-identify-that-light-in-sky-750.html for more space pics
Researchers at Dartmouth College have developed a smart ink that turns 3D-printed structures into objects that can change shape and color. The innovation promises to add even more functionality to 3D printing and could pave the way to a new generation of printed material.
The advancement in the area of form-changing intelligent printing - also known as 4D printing - provides a low-cost alternative to printing precision parts for uses in areas ranging from biomedicine to the energy industry.
“This technique gives life to 3D-printed objects,” said Chenfeng Ke, an assistant professor of chemistry at Dartmouth. “While many 3D-printed structures are just shapes that don’t reflect the molecular properties of the material, these inks bring functional molecules to the 3D printing world. We can now print smart objects for a variety of uses.”
Many 3D printing protocols rely on photo-curing resins and result in hard plastic objects with rigid, but random molecular architectures. The new process allows designers to retain specific molecular alignments and functions in a material and converts those structures for use in 3D printing.
Read more.
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
“Neon tetras can control their brightly colored stripes by changing the angle of tiny platelets in their skin,” says Chih-Hao Chang, an associate professor of mechanical and aerospace engineering at North Carolina State University and corresponding author of a paper on the work.
“For this proof-of-concept study, we’ve created a material that demonstrates a similar ability,” says Zhiren Luo, a Ph.D. student at NC State and first author of the paper. “Specifically, we’ve shown that we can shift the material’s color by using a magnetic field to change the orientation of an array of nanocolumns.”
The color-changing material has four layers. A silicon substrate is coated with a polymer that has been embedded with iron oxide nanoparticles. The polymer incorporates a regular array of micron-wide pedestals, making the polymer layer resemble a LEGO® brick. The middle layer is an aqueous solution containing free-floating iron oxide nanoparticles. This solution is held in place by a transparent polymer cover.
Read more.
It`s gonna be Moon Soon season in India!! @neysastudies
The last time any country put boots or, rather, little metal feet, on the Moon was in 2013, when China landed its Yutu rover there. Before that, you’d have to look back to the 1970s to find anything built by Earthlings that camped out on the surface of the Moon.
But in 2018, India says it will be ready to join the ranks of the moon lander. The Indian Space Research Organisation (ISRO) is getting ready to land its very first lunar rover by the end of March 2018, as part of its Chandrayaan-2 mission.
Continue Reading.
Researchers in Japan have found a way to create innovative materials by blending metals with precision control. Their approach, based on a concept called atom hybridization, opens up an unexplored area of chemistry that could lead to the development of advanced functional materials.
Multimetallic clusters—typically composed of three or more metals—are garnering attention as they exhibit properties that cannot be attained by single-metal materials. If a variety of metal elements are freely blended, it is expected that as-yet-unknown substances are discovered and highly-functional materials are developed. So far, no one had reported the multimetallic clusters blended with more than four metal elements so far because of unfavorable separation of different metals. One idea to overcome this difficulty is miniaturization of cluster sizes to one-nanometer scale, which forces the different metals to be blended in a small space. However, there was no way to realize this idea.
Read more.
Food for thought
We might won`t need a last supper yet
https://ift.tt/2vM76S5
Your daily selection of the latest science news!
According to Breaking Science News
A team of scientists from the Garvan Institute of Medical Research and the Universities of New South Wales and Sydney has identified a new DNA structure — called the intercalated motif (i-motif) — inside living human cells.
Deep inside the cells in our body lies our DNA. The information in the DNA code — all 6 billion A, C, G and T letters — provides precise instructions for how our bodies are built, and how they work.
The iconic ‘double helix’ shape of DNA has captured the public imagination since 1953, when James Watson and Francis Crick famously uncovered the structure of DNA.
However, it’s now known that short stretches of DNA can exist in other shapes, in the laboratory at least — and scientists suspect that these different shapes might play an important role in how and when the DNA code is ‘read.’
“When most of us think of DNA, we think of the double helix. This research reminds us that totally different DNA structures exist — and could well be important for our cells,” said co-lead author Dr. Daniel Christ, from the Kinghorn Centre for Clinical Genomics at the Garvan Institute of Medical Research and St Vincent’s Clinical School at the University of New South Wales.
“The i-motif is a four-stranded ‘knot’ of DNA,” added co-lead author Dr. Marcel Dinger, also from the Garvan Institute of Medical Research and the University of New South Wales.
“In the knot structure, C letters on the same strand of DNA bind to each other — so this is very different from a double helix, where ‘letters’ on opposite strands recognize each other, and where Cs bind to Gs [guanines].”
Although researchers have seen the i-motif before and have studied it in detail, it has only been witnessed in vitro — that is, under artificial conditions in the laboratory, and not inside cells. In fact, they have debated whether i-motif DNA structures would exist at all inside living things — a question that is resolved by the new findings.
To detect the i-motifs inside cells, Dr. Christ, Dr. Dinger and their colleagues developed a precise new tool — a fragment of an antibody molecule — that could specifically recognize and attach to i-motifs with a very high affinity.
Until now, the lack of an antibody that is specific for i-motifs has severely hampered the understanding of their role.
Crucially, the antibody fragment didn’t detect DNA in helical form, nor did it recognize ‘G-quadruplex structures’ (a structurally similar four-stranded DNA arrangement).
With the new tool, the team uncovered the location of ‘i-motifs’ in a range of human cell lines.
Using fluorescence techniques to pinpoint where the i-motifs were located, the study authors identified numerous spots of green within the nucleus, which indicate the position of i-motifs.
The scientists showed that i-motifs mostly form at a particular point in the cell’s ‘life cycle’ — the late G1 phase, when DNA is being actively ‘read.’
They also showed that i-motifs appear in some promoter regions — areas of DNA that control whether genes are switched on or off — and in telomeres, ‘end sections’ of chromosomes that are important in the aging process.
“We think the coming and going of the i-motifs is a clue to what they do. It seems likely that they are there to help switch genes on or off, and to affect whether a gene is actively read or not,” said study first author Dr. Mahdi Zeraati, also from the Garvan Institute of Medical Research and the University of New South Wales.
“We also think the transient nature of the i-motifs explains why they have been so very difficult to track down in cells until now,” Dr. Christ added.
“It’s exciting to uncover a whole new form of DNA in cells — and these findings will set the stage for a whole new push to understand what this new DNA shape is really for, and whether it will impact on health and disease,” Dr. Dinger said.
The team’s results appear in the journal Nature Chemistry.
Read more…
Got any news, tips or want to contact us directly? Email esistme@gmail.com
__
This article and images were originally posted on [Breaking Science News] April 24, 2018 at 03:11PM. Credit to Author and Breaking Science News | ESIST.T>G>S Recommended Articles Of The Day
Hunt for Huntington!
Possible Biomarker for Huntington’s Identified
A new discovery of a potential biomarker for Huntington’s disease (HD) could mean a more effective way of evaluating the effectiveness of treatments for this neurological disease. The findings may provide insight into treatments that could postpone the death of neurons in people who carry the HD gene mutation, but who do not yet show symptoms of the disease.
And also math is a common language for spanish and chinese people. The original esperanto :)
Cooking With Neil DeGrasse Tyson