This Is How To Bring Dark Skies Back In An Increasingly Developed World

This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World
This Is How To Bring Dark Skies Back In An Increasingly Developed World

This Is How To Bring Dark Skies Back In An Increasingly Developed World

“A dark night sky is something we not only all deserve, it’s something that we could very easily have for a relatively small investment. The benefits, in addition to long-term cost savings, education, and the environmental positives, can be taken in all at once by everyone who both lives in, or simply passes through, your town.

And for those of you still asking, “what benefit is that?” As soon as you encounter your first dark sky community, you’ll see for yourself that there’s no explanation required. To take it all in, just look up.”

When was the last time you saw the Milky Way? If you’re like 99% of the United States or Europe, it wasn’t from your own backyard. While you might assume that’s because we need to have well-lit areas where most of us live, that’s only partially correct. It’s because we choose to have brightly-lit areas to meet our safety and commercial nighttime needs, but there’s a fundamental difference between well-lit and brightly-lit. More than 20 independent communities have taken all the steps necessary to restore darkness to their areas, following the recommendations and getting certified by the IDA: the International Dark Sky Association.

Forget about asking, “why aren’t there more?” Instead, try being the change you want to see, and work to bring dark skies, as well as health and environmental benefits, back to your own community!

More Posts from Ocrim1967 and Others

6 years ago

Your Gut in Space

Finding the Right Balance for the Microbiota

Trillions of microorganisms live on and in the human body, many of them essential to its function and health. These organisms, collectively known as the microbiota, outnumber cells in the body by at least five times. 

image

Microorganisms in the intestinal tract, the gut microbiota, play an especially important role in human health. An investigation on the International Space Station, Rodent Research-7 (RR-7), studies how the gut microbiota changes in response to spaceflight, and how that change in turn affects the immune system, metabolic system, and circadian or daily rhythms. 

image

Research shows that the microbiota in the mammalian digestive tract has a major impact on an individual’s physiology and behavior. In humans, disruption of microbial communities has been linked to multiple health problems affecting intestinal, immune, mental and metabolic systems.

image

The investigation compares two different genetic strains of mice and two different durations of spaceflight. Twenty mice, ten of each strain, launch to the space station, and another 20 remain on the ground in identical conditions (except, of course, for the absence of gravity). Mice are a model organism that often serves as a scientific stand-in for other mammals and humans. 

image

Fecal material collected from the mice every two weeks will be examined for changes in the gut microbiota. Researchers plan to analyze fecal and tissue samples after 30 and 90 days of flight to compare the effects of different durations of time in space. 

image

With a better understanding of relationships between changes such as disruption in sleep and an imbalance of microbial populations, researchers can identify specific factors that contribute to changes in the microbiota. Further studies then can determine proactive measures and countermeasures to protect astronaut health during long-term missions. 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

6 years ago

Greatest Hits — Craters We Love

Our solar system was built on impacts — some big, some small — some fast, some slow. This week, in honor of a possible newly-discovered large crater here on Earth, here’s a quick run through of some of the more intriguing impacts across our solar system.

1. Mercury: A Basin Bigger Than Texas

image

Mercury does not have a thick atmosphere to protect it from space debris. The small planet is riddled with craters, but none as spectacular as the Caloris Basin. “Basin” is what geologists call craters larger than about 186 miles (300 kilometers) in diameter. Caloris is about 950 miles (1,525 kilometers) across and is ringed by mile-high mountains.

For scale, the state of Texas is 773 miles (1,244 kilometers) wide from east to west.

2. Venus: Tough on Space Rocks

image

Venus’ ultra-thick atmosphere finishes off most meteors before they reach the surface. The planet’s volcanic history has erased many of its craters, but like almost any place with solid ground in our solar system, there are still impact scars to be found. Most of what we know of Venus’ craters comes from radar images provided by orbiting spacecraft, such as NASA’s Magellan.

Mead Crater is the largest known impact site on Venus. It is about 170 miles (275 kilometers) in diameter. The relatively-flat, brighter inner floor of the crater indicates it was filled with impact melt and/or lava.

3. Earth: Still Craters After All These Years

image

Evidence of really big impacts — such as Arizona’s Meteor Crater — are harder to find on Earth. The impact history of our home world has largely been erased by weather and water or buried under lava, rock or ice. Nonetheless, we still find new giant craters occasionally.

A NASA glaciologist has discovered a possible impact crater buried under more than a mile of ice in northwest Greenland.

This follows the finding, announced in November 2018, of a 19-mile (31-kilometer) wide crater beneath Hiawatha Glacier – the first meteorite impact crater ever discovered under Earth’s ice sheets. 

If the second crater, which has a width of over 22 miles (35 kilometers), is ultimately confirmed as the result of a meteorite impact, it will be the 22nd largest impact crater found on Earth.

4. Moon: Our Cratered Companion

image

Want to imagine what Earth might look like without its protective atmosphere, weather, water and other crater-erasing features? Look up at the Moon. The Moon’s pockmarked face offers what may be humanity’s most familiar view of impact craters.

One of the easiest to spot is Tycho, the tight circle and bright, radiating splat are easy slightly off center on the lower-left side of the full moon. Closer views of the 53-mile (85 kilometer)-wide crater from orbiting spacecraft reveal a beautiful central peak, topped with an intriguing boulder that would fill about half of a typical city block.

5. Mars: Still Taking Hits

image

Mars has just enough atmosphere to ensure nail-biting spacecraft landings, but not enough to prevent regular hits from falling space rocks. This dark splat on the Martian south pole is less than a year old, having formed between July and September 2018. The two-toned blast pattern tells a geologic story. The larger, lighter-colored blast pattern could be the result of scouring by winds from the impact shockwave on ice. The darker-colored inner blast pattern is because the impactor penetrated the thin ice layer, blasting the dark sand underneath in all directions.

6. Ceres: What Lies Beneath

image

The bright spots in Ceres’ Occator crater intrigued the world from the moment the approaching Dawn spacecraft first photographed it in 2015. Closer inspection from orbit revealed the spots to be the most visible example of hundreds of bright, salty deposits that decorate the dwarf planet like a smattering of diamonds. The science behind these bright spots is even more compelling: they are mainly sodium carbonate and ammonium chloride that somehow made their way to the surface in a slushy brine from within or below the crust. Thanks to Dawn, scientists have a better sense of how these reflective areas formed and changed over time — processes indicative of an active, evolving world.

7. Comet Tempel 1: We Did It!

image

Scientists have long known we can learn a lot from impact craters — so, in 2005, they made one themselves and watched it happen.

On July 4, 2005, NASA’s Deep Impact spacecraft trained its instruments on an 816-pound (370-kilogram) copper impactor as it smashed into comet Tempel 1.

One of the more surprising findings: The comet has a loose, “fluffy” structure, held together by gravity and contains a surprising amount of organic compounds that are part of the basic building blocks of life.

8. Mimas: May the 4th Be With You

image

Few Star Wars fans — us included — can resist Obi Wan Kenobi’s memorable line “That’s no moon…” when images of Saturn’s moon Mimas pop up on a screen. Despite its Death Star-like appearance, Mimas is most definitely a moon. Our Cassini spacecraft checked, a lot — and the superlaser-looking depression is simply an 81-mile (130-kilometer) wide crater named for the moon’s discoverer, William Herschel.

9. Europa: Say What?

image

The Welsh name of this crater on Jupiter’s ocean moon Europa looks like a tongue-twister, but it is easiest pronounced as “pool.” Pwyll is thought to be one of the youngest features we know of on Europa. The bright splat from the impact extends more than 600 miles (about 1,000 kilometers) around the crater, a fresh blanket over rugged, older terrain. “Fresh,” or young, is a relative term in geology; the crater and its rays are likely millions of years old.

10. Show Us Your Greatest Hits

image

Got a passion for Stickney, the dominant bowl-shaped crater on one end of Mars’ moon Phobos? Or a fondness for the sponge-like abundance of impacts on Saturn’s battered moon Hyperion (pictured)? There are countless craters to choose from. Share your favorites with us on Twitter, Instagram and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago
Unusual Signal Suggests Neutron Star Destroyed By Black Hole
Unusual Signal Suggests Neutron Star Destroyed By Black Hole
Unusual Signal Suggests Neutron Star Destroyed By Black Hole

Unusual Signal Suggests Neutron Star Destroyed by Black Hole

What created this unusual explosion? Three weeks ago, gravitational wave detectors in the USA and Europe – the LIGO and Virgo detectors – detected a burst of gravitational radiation that had the oscillating pattern expected when a black hole destroys a neutron star. One object in event S190814sv was best fit with a mass greater than five times the mass of the Sun – making it a good candidate for a black hole, while the other object appeared to have a mass less than three times the mass of the Sun – making it a good candidate for a neutron star. No similar event had been detected with gravitational waves before. Unfortunately, no light was seen from this explosion, light that might have been triggered by the disrupting neutron star. It is theoretically possible that the lower mass object was also a black hole, even though no clear example of a black hole with such a low mass is known. The featured video was created to illustrate a previously suspected black hole - neutron star collision detected in light in 2005, specifically gamma-rays from the burst GRB 050724. The animated video starts with a foreground neutron star orbiting a black hole surrounded by an accretion disk. The black hole’s gravity then shreds the neutron star, creating a jet as debris falls into the black hole. S190814sv will continue to be researched, with clues about the nature of the objects involved possibly coming from future detections of similar systems. Illustration Video Credit: NASA, Dana Berry (Skyworks Digital)

4 years ago

Black holes

A black hole is a region of spacetime exhibiting such strong gravitational effects that nothing—not even particles and electromagnetic radiation such as light—can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways a black hole acts like an ideal black body, as it reflects no light.  

image

The idea of a body so massive that even light could not escape was briefly proposed by astronomical pioneer and English clergyman John Michell in a letter published in November 1784. Michell’s simplistic calculations assumed that such a body might have the same density as the Sun, and concluded that such a body would form when a star’s diameter exceeds the Sun’s by a factor of 500, and the surface escape velocity exceeds the usual speed of light.

image

At the center of a black hole, as described by general relativity, lies a gravitational singularity, a region where the spacetime curvature becomes infinite. For a non-rotating black hole, this region takes the shape of a single point and for a rotating black hole, it is smeared out to form a ring singularity that lies in the plane of rotation. In both cases, the singular region has zero volume. It can also be shown that the singular region contains all the mass of the black hole solution. The singular region can thus be thought of as having infinite density. 

image

How Do Black Holes Form?

Scientists think the smallest black holes formed when the universe began.

Stellar black holes are made when the center of a very big star falls in upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space.

image

Scientists think supermassive black holes were made at the same time as the galaxy they are in.

Supermassive black holes, which can have a mass equivalent to billions of suns, likely exist in the centers of most galaxies, including our own galaxy, the Milky Way. We don’t know exactly how supermassive black holes form, but it’s likely that they’re a byproduct of galaxy formation. Because of their location in the centers of galaxies, close to many tightly packed stars and gas clouds, supermassive black holes continue to grow on a steady diet of matter.

image

If Black Holes Are “Black,” How Do Scientists Know They Are There?

A black hole can not be seen because strong gravity pulls all of the light into the middle of the black hole. But scientists can see how the strong gravity affects the stars and gas around the black hole. 

Scientists can study stars to find out if they are flying around, or orbiting, a black hole.

image

When a black hole and a star are close together, high-energy light is made. This kind of light can not be seen with human eyes. Scientists use satellites and telescopes in space to see the high-energy light.

image

On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves; because these waves were generated from a black hole merger it was the first ever direct detection of a binary black hole merger. On 15 June 2016, a second detection of a gravitational wave event from colliding black holes was announced. 

image

Simulation of gravitational lensing by a black hole, which distorts the image of a galaxy in the background 

Animated simulation of gravitational lensing caused by a black hole going past a background galaxy. A secondary image of the galaxy can be seen within the black hole Einstein ring on the opposite direction of that of the galaxy. The secondary image grows (remaining within the Einstein ring) as the primary image approaches the black hole. The surface brightness of the two images remains constant, but their angular size varies, hence producing an amplification of the galaxy luminosity as seen from a distant observer. The maximum amplification occurs when the background galaxy (or in the present case a bright part of it) is exactly behind the black hole.

Could a Black Hole Destroy Earth?

Black holes do not go around in space eating stars, moons and planets. Earth will not fall into a black hole because no black hole is close enough to the solar system for Earth to do that.

image

Even if a black hole the same mass as the sun were to take the place of the sun, Earth still would not fall in. The black hole would have the same gravity as the sun. Earth and the other planets would orbit the black hole as they orbit the sun now.

The sun will never turn into a black hole. The sun is not a big enough star to make a black hole.

More posts about black holes

Source 1, 2 & 3

6 years ago
HiPOD (31 August 2018) Dunes In South Xainza Crater
HiPOD (31 August 2018) Dunes In South Xainza Crater

HiPOD (31 August 2018) Dunes in South Xainza Crater

   – They look so innocent… (270 km above the surface. Black and white is less than 5 km across; enhanced color is less than 1 km.)

NASA/JPL/University of Arizona

5 years ago
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe

Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe

“Dark matter should drive the formation of structure on all large scales, with every galaxy consisting of a large, diffuse halo of dark matter that is far less dense and more diffuse than the normal matter. While the normal matter clumps and clusters together, since it can stick together and interact, dark matter simply passes through both itself and normal matter. Without dark matter, the Universe wouldn’t match our observations.

But this branch of science truly got its start with the revolutionary work of Vera Rubin. While many, including me, will deride the Nobel committee for snubbing her revolutionary science, she truly did change the Universe. On what would have been her 91st birthday, remember her in her own words:

“Don’t let anyone keep you down for silly reasons such as who you are, and don’t worry about prizes and fame. The real prize is finding something new out there.”

50 years later, we’re still investigating the mystery Vera Rubin uncovered. May there always be more to learn.”

Today, dark matter is practically accepted as a given, owing to an overwhelming suite of evidence that points to its existence. Without adding dark matter as an ingredient, we simply can’t explain the Universe, from gravitational lensing to large-scale structure to Big Bang nucleosynthesis to the cosmic microwave background and much more. But throughout the 1930s, 40s and 50s, no one would even give the idea a second thought. Until, that is, Vera Rubin came along and changed everything. 

Today would have been her 91st birthday, and it’s about time you got the scientific story to celebrate what she taught us all.

6 years ago
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants
At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

At Last, Scientists Have Found The Galaxy’s Missing Exoplanets: Cold Gas Giants

“By using the same instrument and leaving virtually no long-term gaps in the data, long-term, precise Doppler measurements finally became possible. A total of five brand new planets, one confirmation of a suggested planet, and three updated planets were announced in this latest study, bringing the total number of Jupiter-or-larger planets beyond the Jupiter-Sun distance up to 26. It shows us what we’d always hoped for: that our Solar System isn’t so unusual in the Universe; it’s just difficult to observe and detect planets like the ones we have.”

We’ve long suspected that there was nothing special about our Solar System; that Sun-like stars should have a wide variety of planets around them, including many of the types of worlds found orbiting our Sun. However, owing to the difficulty in making the kinds of measurements that would reveal them to us, our work has revealed a sample of planets biased towards two types of planets: the short-period worlds and the well-separated, high-mass worlds. Planets like Jupiter or Saturn were elusive for so long. But now, owing to research programs dedicated to monitoring nearby stars on decadal timescales, we’ve revealed a remarkable number of these worlds, many of which are now candidates for future direct imaging surveys.

The missing gas giants of the Universe, including worlds like the ones actually found orbiting our Sun, are finally within reach. Here’s how we’ve revealed them at last!

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

  • starsailor606
    starsailor606 liked this · 1 year ago
  • woollel
    woollel liked this · 2 years ago
  • r00tvegetables
    r00tvegetables liked this · 2 years ago
  • itshabitchual
    itshabitchual liked this · 2 years ago
  • saeva-sava
    saeva-sava reblogged this · 2 years ago
  • saeva-sava
    saeva-sava liked this · 2 years ago
  • notwiselybuttoowell
    notwiselybuttoowell reblogged this · 2 years ago
  • notwiselybuttoowell
    notwiselybuttoowell liked this · 2 years ago
  • 5etting
    5etting liked this · 3 years ago
  • ct2311
    ct2311 liked this · 4 years ago
  • texasrealfood
    texasrealfood reblogged this · 4 years ago
  • texasrealfood
    texasrealfood liked this · 4 years ago
  • evidentutensil
    evidentutensil reblogged this · 4 years ago
  • naranocturnal
    naranocturnal reblogged this · 4 years ago
  • heal-the-block
    heal-the-block reblogged this · 4 years ago
  • heal-the-block
    heal-the-block liked this · 4 years ago
  • nocturnallyfree
    nocturnallyfree reblogged this · 4 years ago
  • puncivilian
    puncivilian liked this · 4 years ago
  • terrestrialgarden
    terrestrialgarden liked this · 4 years ago
  • oceanara
    oceanara liked this · 4 years ago
  • ambavee
    ambavee liked this · 4 years ago
  • lay-doubt-to-rest
    lay-doubt-to-rest liked this · 4 years ago
  • my-caliginous-romance
    my-caliginous-romance liked this · 4 years ago
  • furplewastaken
    furplewastaken reblogged this · 4 years ago
  • zumer-feygele
    zumer-feygele reblogged this · 4 years ago
  • zumer-feygele
    zumer-feygele liked this · 4 years ago
  • darkferret
    darkferret liked this · 4 years ago
  • jay-kuh
    jay-kuh liked this · 4 years ago
  • aboxthecolourofheartache
    aboxthecolourofheartache reblogged this · 4 years ago
  • blabandor
    blabandor reblogged this · 4 years ago
  • chatwiththeclouds
    chatwiththeclouds reblogged this · 4 years ago
  • lunarwench
    lunarwench reblogged this · 4 years ago
  • windborn
    windborn liked this · 4 years ago
  • oquinn53
    oquinn53 reblogged this · 4 years ago
  • kittysweetwater
    kittysweetwater reblogged this · 4 years ago
  • kittysweetwater
    kittysweetwater liked this · 4 years ago
  • kaziclez
    kaziclez liked this · 4 years ago
  • noorthebearded
    noorthebearded reblogged this · 4 years ago
  • vibois
    vibois reblogged this · 4 years ago
  • vibois
    vibois liked this · 4 years ago
  • hourglassandspectacles
    hourglassandspectacles liked this · 4 years ago
  • chatwiththeclouds
    chatwiththeclouds liked this · 4 years ago
  • haciendaespanola
    haciendaespanola reblogged this · 4 years ago
  • haciendaespanola
    haciendaespanola liked this · 4 years ago
  • coffee-catboy
    coffee-catboy liked this · 4 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags