Make Sure You Observe The Moon On October 20

Make Sure You Observe the Moon on October 20

On Saturday, October 20, NASA will host the ninth annual International Observe the Moon Night. One day each year, everyone on Earth is invited to observe and learn about the Moon together, and to celebrate the cultural and personal connections we all have with our nearest celestial neighbor.

There are a number of ways to celebrate. You can attend an event, host your own, or just look up! Here are 10 of our favorite ways to observe the Moon:

1. Look up

image

Image credit: NASA’s Scientific Visualization Studio/Ernie Wright

The simplest way to observe the Moon is simply to look up. The Moon is the brightest object in our night sky, the second brightest in our daytime sky and can be seen from all around the world — from the remote and dark Atacama Desert in Chile to the brightly lit streets of Tokyo. On October 20, the near side of the Moon, or the side facing Earth, will be about 80 percent illuminated, rising in the early evening.

See the Moon phase on October 20 or any other day of the year!

2. Peer through a telescope or binoculars

image

The Moon and Venus are great targets for binoculars. Image Credit: NASA/Bill Dunford

With some magnification help, you will be able to focus in on specific features on the Moon, like the Sea of Tranquility or the bright Copernicus Crater. Download our Moon maps for some guided observing on Saturday.

3. Photograph the Moon

image

Image credit: NASA/GSFC/ASU

Our Lunar Reconnaissance Orbiter (LRO) has taken more than 20 million images of the Moon, mapping it in stunning detail. You can see featured, captioned images on LRO’s camera website, like the one of Montes Carpatus seen here. And, of course, you can take your own photos from Earth. Check out our tips on photographing the Moon!

4. Take a virtual field trip

image

Image credit: NASA/JPL-Caltech

Plan a lunar hike with Moontrek. Moontrek is an interactive Moon map made using NASA data from our lunar spacecraft. Fly anywhere you’d like on the Moon, calculate the distance or the elevation of a mountain to plan your lunar hike, or layer attributes of the lunar surface and temperature. If you have a virtual reality headset, you can experience Moontrek in 3D.

5. Touch the topography

image

Image credit: NASA GSFC/Jacob Richardson

Observe the Moon through touch! If you have access to a 3D printer, you can peruse our library of 3D models and lunar landscapes. This model of the Apollo 11 landing site created by NASA scientist Jacob Richardson, is derived from LRO’s topographic data. Near the center, you can actually feel a tiny dot where astronauts Neil Armstrong and Buzz Aldrin left the Lunar Descent Module.

6. Make Moon art

image

Image credit: LPI/Andy Shaner

Enjoy artwork of the Moon and create your own! For messy fun, lunar crater paintings demonstrate how the lunar surface changes due to consistent meteorite impacts.

7. Relax on your couch

image

Image credit: NASA’s Scientific Visualization Studio/Ernie Wright

There are many movies that feature our nearest neighbor, from A Voyage to the Moon by George Melies, to Apollo 13, to the newly released First Man. You can also spend your evening with our lunar playlist on YouTube or this video gallery, learning about the Moon’s role in eclipses, looking at the Moon phases from the far side, and seeing the latest science portrayed in super high resolution. You’ll impress all of your friends with your knowledge of supermoons.

8. Listen to the Moon

Video credit: NASA’s Scientific Visualization Studio/Ernie Wright

Make a playlist of Moon songs. For inspiration, check out this list of lunar tunes. We also recommend LRO’s official music video, The Moon and More, featuring Javier Colon, season 1 winner of NBC’s “The Voice.” Or you can just watch this video featuring “Clair de Lune,” by French composer Claude Debussy, over and over.

9. See the Moon through the eyes of a spacecraft

image

Image credit: NASA/GSFC/MIT

Visible light is just one tool that we use to explore our universe. Our spacecraft contain many different types of instruments to analyze the Moon’s composition and environment. Review the Moon’s gravity field with data from the GRAIL spacecraft or decipher the maze of this slope map from the laser altimeter onboard LRO. This collection from LRO features images of the Moon’s temperature and topography. You can learn more about our different missions to explore the Moon here.

10. Continue your observations throughout the year

image

Image credit: NASA’s Scientific Visualization Studio/Ernie Wright

An important part of observing the Moon is to see how it changes over time. International Observe the Moon Night is the perfect time to start a Moon journal. See how the shape of the Moon changes over the course of a month, and keep track of where and what time it rises and sets. Observe the Moon all year long with these tools and techniques!

However you choose to celebrate International Observe the Moon Night, we want to hear about it! Register your participation and share your experiences on social media with #ObserveTheMoon or on our Facebook page. Happy observing!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Ocrim1967 and Others

6 years ago
A Surprising Surge At Vavilov Ice Cap

A Surprising Surge at Vavilov Ice Cap

After moving quite slowly for decades, the outlet glacier of Vavilov Ice Cap began sliding dozens of times faster than is typical. The ice moved fast enough for the fan-shaped edge of the glacier to protrude from an ice cap on October Revolution Island and spread widely across the Kara Sea. The Landsat images above were acquired on July 1, 2013, June 18, 2015, and June 24, 2018, respectively.

“The fact that an apparently stable, cold-based glacier suddenly went from moving 20 meters per year to 20 meters per day was extremely unusual, perhaps unprecedented,” said University of Colorado Boulder glaciologist Michael Willis. “The numbers here are simply nuts. Before this happened, as far as I knew, cold-based glaciers simply didn’t do that…couldn’t do that.”

Willis and his colleagues are still piecing together what triggered such a dramatic surge. They suspect that marine sediments immediately offshore are unusually slippery, perhaps containing clay. Also, water must have somehow found its way under the land-based part of the glacier, reducing friction and priming the ice to slide.

Full story here: go.nasa.gov/2Z931lc

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago
A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

A high-definition video camera outside the space station captured stark and sobering views of Hurricane Florence, a Category 4 storm. Image Credit: ESA/NASA–A. Gerst

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

The scene is a late-spring afternoon in the Amazonis Planitia region of northern Mars. The view covers an area about four-tenths of a mile (644 meters) across. North is toward the top. The length of the dusty whirlwind’s shadow indicates that the dust plume reaches more than half a mile (800 meters) in height. The plume is about 30 yards or meters in diameter. Image credit: NASA/JPL-Caltech/Univ. of Arizona

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

A false-color image of the Great Red Spot of Jupiterfrom Voyager 1. The white oval storm directly below the Great Red Spot has the approximate diameter of Earth. NASA, Caltech/JPL

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

The huge storm (great white spot) churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA; Color Composite: Jean-Luc Dauvergne

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

The spinning vortex of Saturn’s north polar storm resembles a deep red rose of giant proportions surrounded by green foliage in this false-color image from NASA’s Cassini spacecraft. Measurements have sized the eye at 1,250 miles (2,000 kilometers) across with cloud speeds as fast as 330 miles per hour (150 meters per second). This image is among the first sunlit views of Saturn’s north pole captured by Cassini’s imaging cameras. Credit: NASA/JPL-Caltech/SSI

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

Colorized infrared image of Uranus obtained on August 6, 2014, with adaptive optics on the 10-meter Keck telescope; white spots are large storms. Image credit: Imke de Pater, University of California, Berkeley / Keck Observatory images.

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

Neptune’s Great Dark Spot, a large anticyclonic storm similar to Jupiter’s Great Red Spot, observed by NASA’s Voyager 2 spacecraft in 1989. Credit: NASA / Jet Propulsion Lab

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

This true color image captured by NASA’S Cassini spacecraft before a distant flyby of Saturn’s moon Titan on June 27, 2012, shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere. Image credit: NASA/JPL-Caltech/Space Science Institute

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

This artist’s concept shows what the weather might look like on cool star-like bodies known as brown dwarfs. These giant balls of gas start out life like stars, but lack the mass to sustain nuclear fusion at their cores, and instead, fade and cool with time.

New research from NASA’s Spitzer Space Telescope suggests that most brown dwarfs are racked with colossal storms akin to Jupiter’s famous “Great Red Spot.” These storms may be marked by fierce winds, and possibly lightning. The turbulent clouds might also rain down molten iron, hot sand or salts – materials thought to make up the cloud layers of brown dwarfs.

Image credit: NASA/JPL-Caltech/University of Western Ontario/Stony Brook University

A High-definition Video Camera Outside The Space Station Captured Stark And Sobering Views Of Hurricane

In this image, the nightmare world of HD 189733 b is the killer you never see coming. To the human eye, this far-off planet looks bright blue. But any space traveler confusing it with the friendly skies of Earth would be badly mistaken. The weather on this world is deadly. Its winds blow up to 5,400 mph (2 km/s) at seven times the speed of sound, whipping all would-be travelers in a sickening spiral around the planet. And getting caught in the rain on this planet is more than an inconvenience; it’s death by a thousand cuts. This scorching alien world possibly rains glass—sideways—in its howling winds. The cobalt blue color comes not from the reflection of a tropical ocean, as on Earth, but rather a hazy, blow-torched atmosphere containing high clouds laced with silicate particles. Image Credit: ESO/M. Kornmesser

4 years ago
Asperitas And Mammatus
Asperitas And Mammatus
Asperitas And Mammatus
Asperitas And Mammatus
Asperitas And Mammatus
Asperitas And Mammatus
Asperitas And Mammatus

Asperitas and Mammatus

Well-defined, wave-like structures in the underside of the cloud; more chaotic and with less horizontal organization than the variety undulatus. Asperitas is characterized by localized waves in the cloud base, either smooth or dappled with smaller features, sometimes descending into sharp points, as if viewing a roughened sea surface from below. Varying levels of illumination and thickness of the cloud can lead to dramatic visual effects.

Occurs mostly with Stratocumulus and Altocumulus

Mammatus is a cellular pattern of pouches hanging underneath the base of a cloud, typically cumulonimbus rainclouds, although they may be attached to other classes of parent clouds.

source | source | images: x, x, x, x, x, x, x

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

6 years ago

I was wondering if you could go in depth, at least to a degree about how incredibly dense objects have strong enough gravity to distort light. To me that's one of the wildest concepts I can imagine, not that I expect you to be all knowing but maybe you've got a good article or something? I don't recall if you've ever made posts about the theory of relativity. Sorry for the long ask!

Well, I know only the basics, things I study in my free time, however, I can try to explain. The distortion of space-time is described by Einstein’s Theory of General Reality. The more massive an object, the more its curvature will be in the space-time fabric.

I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have
I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have

This distortion in light is known as a gravitational lensing. The gravitational lensing is formed due to a space-time distortion caused by the presence of a large mass body between a distant light source and an observer.

I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have
I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have

These distortions are widely observed through globular clusters.

Since the amount of lensing depends on the total mass of the cluster, gravitational lensing can be used to ‘weigh’ clusters. This has considerably improved our understanding of the distribution of the ‘hidden’ dark matter in galaxy clusters and hence in the Universe as a whole. The effect of gravitational lensing also allowed a first step towards revealing the mystery of the dark energy.

I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have
I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have

As gravitational lenses function as magnification glasses it is possible to use them to study distant galaxies from the early Universe, which otherwise would be impossible to see.

I Was Wondering If You Could Go In Depth, At Least To A Degree About How Incredibly Dense Objects Have

Gravitational lensing happens on all scales – the gravitational field of galaxies and clusters of galaxies can lens light, but so can smaller objects such as stars and planets. Even the mass of our own bodies will lens light passing near us a tiny bit, although the effect is too small to ever measure.

5 years ago

5 Ways the Moon Landing Changed Life on Earth

When Neil Armstrong took his first steps on the Moon 50 years ago, he famously said “that’s one small step for a man, one giant leap for mankind.” He was referring to the historic milestone of exploring beyond our own planet — but there’s also another way to think about that giant leap: the massive effort to develop technologies to safely reach, walk on the Moon and return home led to countless innovations that have improved life on Earth.

Armstrong took one small step on the lunar surface, but the Moon landing led to a giant leap forward in innovations for humanity.

Here are five examples of technology developed for the Apollo program that we’re still using today:

1. Food Safety Standards

As soon as we started planning to send astronauts into space, we faced the problem of what to feed them — and how to ensure the food was safe to eat. Can you imagine getting food poisoning on a spacecraft, hundreds of thousands of miles from home?

We teamed up with a familiar name in food production: the Pillsbury Company. The company soon realized that existing quality control methods were lacking. There was no way to be certain, without extensive testing that destroyed the sample, that the food was free of bacteria and toxins.

Pillsbury revamped its entire food-safety process, creating what became the Hazard Analysis and Critical Control Point system. Its aim was to prevent food safety problems from occurring, rather than catch them after the fact. They managed this by analyzing and controlling every link in the chain, from the raw materials to the processing equipment to the people handling the food.

Today, this is one of the space program’s most far-reaching spinoffs. Beyond keeping the astronaut food supply safe, the Hazard Analysis and Critical Point system has also been adopted around the world — and likely reduced the risk of bacteria and toxins in your local grocery store. 

image

2. Digital Controls for Air and Spacecraft

The Apollo spacecraft was revolutionary for many reasons. Did you know it was the first vehicle to be controlled by a digital computer? Instead of pushrods and cables that pilots manually adjusted to manipulate the spacecraft, Apollo’s computer sent signals to actuators at the flick of a switch.

Besides being physically lighter and less cumbersome, the switch to a digital control system enabled storing large quantities of data and programming maneuvers with complex software.

Before Apollo, there were no digital computers to control airplanes either. Working together with the Navy and Draper Laboratory, we adapted the Apollo digital flight computer to work on airplanes. Today, whatever airline you might be flying, the pilot is controlling it digitally, based on the technology first developed for the flight to the Moon.

image

3. Earthquake-ready Shock Absorbers

A shock absorber descended from Apollo-era dampers and computers saves lives by stabilizing buildings during earthquakes.

Apollo’s Saturn V rockets had to stay connected to the fueling tubes on the launchpad up to the very last second. That presented a challenge: how to safely move those tubes out of the way once liftoff began. Given how fast they were moving, how could we ensure they wouldn’t bounce back and smash into the vehicle?

We contracted with Taylor Devices, Inc. to develop dampers to cushion the shock, forcing the company to push conventional shock isolation technology to the limit.

Shortly after, we went back to the company for a hydraulics-based high-speed computer. For that challenge, the company came up with fluidic dampers—filled with compressible fluid—that worked even better. We later applied the same technology on the Space Shuttle’s launchpad.

The company has since adapted these fluidic dampers for buildings and bridges to help them survive earthquakes. Today, they are successfully protecting structures in some of the most quake-prone areas of the world, including Tokyo, San Francisco and Taiwan.

image

4. Insulation for Space

We’ve all seen runners draped in silvery “space blankets” at the end of marathons, but did you know the material, called radiant barrier insulation, was actually created for space?

Temperatures outside of Earth’s atmosphere can fluctuate widely, from hundreds of degrees below to hundreds above zero. To better protect our astronauts, during the Apollo program we invented a new kind of effective, lightweight insulation.

We developed a method of coating mylar with a thin layer of vaporized metal particles. The resulting material had the look and weight of thin cellophane packaging, but was extremely reflective—and pound-for-pound, better than anything else available.

Today the material is still used to protect astronauts, as well as sensitive electronics, in nearly all of our missions. But it has also found countless uses on the ground, from space blankets for athletes to energy-saving insulation for buildings. It also protects essential components of MRI machines used in medicine and much, much more.

image

Image courtesy of the U.S. Marines

5. Healthcare Monitors

Patients in hospitals are hooked up to sensors that send important health data to the nurse’s station and beyond — which means when an alarm goes off, the right people come running to help.

This technology saves lives every day. But before it reached the ICU, it was invented for something even more extraordinary: sending health data from space down to Earth.

When the Apollo astronauts flew to the Moon, they were hooked up to a system of sensors that sent real-time information on their blood pressure, body temperature, heart rate and more to a team on the ground.

The system was developed for us by Spacelabs Healthcare, which quickly adapted it for hospital monitoring. The company now has telemetric monitoring equipment in nearly every hospital around the world, and it is expanding further, so at-risk patients and their doctors can keep track of their health even outside the hospital.

image

Only a few people have ever walked on the Moon, but the benefits of the Apollo program for the rest of us continue to ripple widely.

In the years since, we have continued to create innovations that have saved lives, helped the environment, and advanced all kinds of technology.

Now we’re going forward to the Moon with the Artemis program and on to Mars — and building ever more cutting-edge technologies to get us there. As with the many spinoffs from the Apollo era, these innovations will transform our lives for generations to come.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

4 years ago
Curious About How To Send Research To The International Space Station Or How To Get Involved With NASA

Curious about how to send research to the International Space Station or how to get involved with NASA missions as a college student? Ask our experts!

Through our Student Payload Opportunity with Citizen Science, or SPOCS, we’re funding five college teams to build experiments for the International Space Station. The students are currently building their experiments focusing on bacteria resistance or sustainability research. Soon, these experiments will head to space on a SpaceX cargo launch! University of Idaho SPOCS team lead Hannah Johnson and NASA STEM on Station activity manager Becky Kamas will be taking your questions in an Answer Time session on Thurs., June 3, from 12-1 p.m. EDT here on our Tumblr! Make sure to ask your question now by visiting http://nasa.tumblr.com/ask. Hannah Johnson recently graduated from the University of Idaho with a Bachelor of Science in Chemical Engineering. She is the team lead for the university’s SPOCS team, Vandal Voyagers I, designing an experiment to test bacteria-resistant polymers in microgravity. Becky Kamas is the activity manager for STEM on Station at our Johnson Space Center in Houston. She helps connect students and educators to the International Space Station through a variety of opportunities, similar to the ones that sparked her interest in working for NASA when she was a high school student. Student Payload Opportunity with Citizen Science Fun Facts:

Our scientists and engineers work with SPOCS students as mentors, and mission managers from Nanoracks help them prepare their experiments for operation aboard the space station.

The Vandal Voyagers I team has nine student members, six of whom just graduated from the Department of Chemical and Biological Engineering. Designing the experiment served as a senior capstone project.

The experiment tests polymer coatings on an aluminum 6061 substrate used for handles on the space station. These handles are used every day by astronauts to move throughout the space station and to hold themselves in place with their feet while they work.

The University of Idaho’s SPOCS project website includes regular project updates showing the process they followed while designing and testing the experiment.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago

First look at the 2024 total solar eclipse

First Look At The 2024 Total Solar Eclipse

The path of the April 8, 2024 total solar eclipse begins in the United States in Texas and ends in Maine. Google, INEGI

…The length of totality varies from one eclipse to the next. The reason is that Earth is not always the same distance from the Sun, and the Moon is not always the same distance from Earth. The Earth-Sun distance varies by 3 percent and the Moon-Earth distance by 12 percent. The result is that the maximum duration of totality from 2000 b.c. to a.d. 3000 is 7 minutes, 29 seconds. (That eclipse will occur July 16, 2186, so don’t get too excited for it.)

While the maximum length of totality during the April 8, 2024, eclipse won’t be that long, it’s still a worthy chunk of time: 4 minutes, 28 seconds — 67 percent longer than the one in 2017. And as with that one, everyone in the contiguous U.S. will see at least a partial eclipse. In fact, as long as you have clear skies on eclipse day, the Moon will cover at least 16.15 percent of the Sun’s brilliant surface. That minimum comes at Tatoosh Island, a tiny speck of land west of Neah Bay, Washington. And although our satellite covering any part of the Sun’s disk sounds cool, you need to aim higher.

Read more ~ Astronomy Magazine Posted by Michael Bakich on Sunday, September 23, 2018

6 years ago
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?
Will We One Day Explore The Worlds Of Our Solar System? How Long Will This Take?

Will we one day explore the worlds of our solar system? How long will this take?

We have a diversity of worlds in our solar system. Majestic places…

Imagine being able to visit Mars and its hostile climate. Imagine being able to visit the moons of Jupiter, observe Io: the volcanic moon, Europa, the frozen moon and Ganymede a moon larger than Mercury itself and that has its own magnetic field. Imagine visiting the moons of Saturn and maybe passing close to your rings… Imagine orbiting or floating through Titan’s atmosphere and closely watching its lakes and seas of methane and liquid ethane. Imagine getting to know the geysers of Enceladus, the valleys of Tethys, and the craters of Mimas… Imagine being able to see the moons of Uranus and have a view of Verona Rupes, the largest cliff of the solar system, located in Miranda. Imagine being able to be in Triton and to be able to observe the cold and azualdo Neptune in the sky…

  • sporadicwombatwizard
    sporadicwombatwizard liked this · 1 year ago
  • carli-meows
    carli-meows liked this · 1 year ago
  • foggyprunezineneck
    foggyprunezineneck liked this · 4 years ago
  • selene-suxs
    selene-suxs liked this · 5 years ago
  • loneeevee
    loneeevee liked this · 5 years ago
  • faerievampireelf
    faerievampireelf reblogged this · 5 years ago
  • 110car8s
    110car8s liked this · 5 years ago
  • enchantingcolortacogarden
    enchantingcolortacogarden liked this · 5 years ago
  • theworldismyoysterandiamthepearl
    theworldismyoysterandiamthepearl liked this · 5 years ago
  • radiohamster
    radiohamster reblogged this · 5 years ago
  • radiohamster
    radiohamster liked this · 5 years ago
  • massejasse
    massejasse reblogged this · 5 years ago
  • massejasse
    massejasse liked this · 5 years ago
  • andr83wa
    andr83wa liked this · 5 years ago
  • dp004
    dp004 reblogged this · 5 years ago
  • roadhorse
    roadhorse reblogged this · 5 years ago
  • lyondc
    lyondc reblogged this · 5 years ago
  • lyondc
    lyondc liked this · 5 years ago
  • belovedantinous
    belovedantinous reblogged this · 5 years ago
  • blackcat2016
    blackcat2016 liked this · 5 years ago
  • faerievampireelf
    faerievampireelf liked this · 5 years ago
  • comtedemoney
    comtedemoney reblogged this · 5 years ago
  • comtedemoney
    comtedemoney liked this · 5 years ago
  • eddiedf241
    eddiedf241 liked this · 5 years ago
  • fkhufu
    fkhufu liked this · 5 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags