The Heliosphere Is The Bubble-like Region Of Space Dominated By The Sun, Which Extends Far Beyond The

The Heliosphere Is The Bubble-like Region Of Space Dominated By The Sun, Which Extends Far Beyond The
The Heliosphere Is The Bubble-like Region Of Space Dominated By The Sun, Which Extends Far Beyond The
The Heliosphere Is The Bubble-like Region Of Space Dominated By The Sun, Which Extends Far Beyond The
The Heliosphere Is The Bubble-like Region Of Space Dominated By The Sun, Which Extends Far Beyond The

The heliosphere is the bubble-like region of space dominated by the Sun, which extends far beyond the orbit of Pluto. Plasma “blown” out from the Sun, known as the solar wind, creates and maintains this bubble against the outside pressure of the interstellar medium, the hydrogen and helium gas that permeates the Milky Way Galaxy. The solar wind flows outward from the Sun until encountering the termination shock, where motion slows abruptly. The Voyager spacecraft have explored the outer reaches of the heliosphere, passing through the shock and entering the heliosheath, a transitional region which is in turn bounded by the outermost edge of the heliosphere, called the heliopause. The shape of the heliosphere is controlled by the interstellar medium through which it is traveling, as well as the Sun and is not perfectly spherical. The limited data available and unexplored nature of these structures have resulted in many theories. The word “heliosphere” is said to have been coined by Alexander J. Dessler, who is credited with first use of the word in the scientific literature.

On September 12, 2013, NASA announced that Voyager 1 left the heliopause on August 25, 2012, when it measured a sudden increase in plasma density of about forty times. Because the heliopause marks one boundary between the Sun’s solar wind and the rest of the galaxy, a spacecraft such as Voyager 1 which has departed the heliosphere, can be said to have reached interstellar space. source

More Posts from Ocrim1967 and Others

6 years ago

Your Gut in Space

Finding the Right Balance for the Microbiota

Trillions of microorganisms live on and in the human body, many of them essential to its function and health. These organisms, collectively known as the microbiota, outnumber cells in the body by at least five times. 

image

Microorganisms in the intestinal tract, the gut microbiota, play an especially important role in human health. An investigation on the International Space Station, Rodent Research-7 (RR-7), studies how the gut microbiota changes in response to spaceflight, and how that change in turn affects the immune system, metabolic system, and circadian or daily rhythms. 

image

Research shows that the microbiota in the mammalian digestive tract has a major impact on an individual’s physiology and behavior. In humans, disruption of microbial communities has been linked to multiple health problems affecting intestinal, immune, mental and metabolic systems.

image

The investigation compares two different genetic strains of mice and two different durations of spaceflight. Twenty mice, ten of each strain, launch to the space station, and another 20 remain on the ground in identical conditions (except, of course, for the absence of gravity). Mice are a model organism that often serves as a scientific stand-in for other mammals and humans. 

image

Fecal material collected from the mice every two weeks will be examined for changes in the gut microbiota. Researchers plan to analyze fecal and tissue samples after 30 and 90 days of flight to compare the effects of different durations of time in space. 

image

With a better understanding of relationships between changes such as disruption in sleep and an imbalance of microbial populations, researchers can identify specific factors that contribute to changes in the microbiota. Further studies then can determine proactive measures and countermeasures to protect astronaut health during long-term missions. 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

5 years ago
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute
This Cat Is So Cute

this cat is so cute

4 years ago
You Know What The Mexicans Say About The Pacific? They Say It Has No Memory. That’s Where I Want To
You Know What The Mexicans Say About The Pacific? They Say It Has No Memory. That’s Where I Want To
You Know What The Mexicans Say About The Pacific? They Say It Has No Memory. That’s Where I Want To
You Know What The Mexicans Say About The Pacific? They Say It Has No Memory. That’s Where I Want To
You Know What The Mexicans Say About The Pacific? They Say It Has No Memory. That’s Where I Want To

You know what the Mexicans say about the Pacific? They say it has no memory. That’s where I want to live the rest of my life. A warm place with no memory. Open up a little hotel right on the beach. Buy some worthless old boat and fix it up new. Take my guests out charter fishing. Zihuatanejo. In a place like that, I could use a man that knows how to get things.

The Shawshank Redemption (1994) dir. Frank Darabont

6 years ago
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)
(Source)

(Source)

5 years ago
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe
Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe

Happy Birthday To Vera Rubin: The Mother Of Our Dark Matter Universe

“Dark matter should drive the formation of structure on all large scales, with every galaxy consisting of a large, diffuse halo of dark matter that is far less dense and more diffuse than the normal matter. While the normal matter clumps and clusters together, since it can stick together and interact, dark matter simply passes through both itself and normal matter. Without dark matter, the Universe wouldn’t match our observations.

But this branch of science truly got its start with the revolutionary work of Vera Rubin. While many, including me, will deride the Nobel committee for snubbing her revolutionary science, she truly did change the Universe. On what would have been her 91st birthday, remember her in her own words:

“Don’t let anyone keep you down for silly reasons such as who you are, and don’t worry about prizes and fame. The real prize is finding something new out there.”

50 years later, we’re still investigating the mystery Vera Rubin uncovered. May there always be more to learn.”

Today, dark matter is practically accepted as a given, owing to an overwhelming suite of evidence that points to its existence. Without adding dark matter as an ingredient, we simply can’t explain the Universe, from gravitational lensing to large-scale structure to Big Bang nucleosynthesis to the cosmic microwave background and much more. But throughout the 1930s, 40s and 50s, no one would even give the idea a second thought. Until, that is, Vera Rubin came along and changed everything. 

Today would have been her 91st birthday, and it’s about time you got the scientific story to celebrate what she taught us all.

6 years ago

Hostile and Closed Environments, Hazards at Close Quarters

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

Hostile And Closed Environments, Hazards At Close Quarters

A spacecraft is not only a home, it’s also a machine. NASA understands that the ecosystem inside a vehicle plays a big role in everyday astronaut life.

Hostile And Closed Environments, Hazards At Close Quarters

Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It’s essential that astronauts are getting the requisite food, sleep and exercise needed to stay healthy and happy. The space environment introduces challenges not faced on Earth.

Hostile And Closed Environments, Hazards At Close Quarters

Technology, as often is the case with out-of-this-world exploration, comes to the rescue! Technology plays a big role in creating a habitable home in a harsh environment and monitoring some of the environmental conditions.

Hostile And Closed Environments, Hazards At Close Quarters

Astronauts are also asked to provide feedback about their living environment, including physical impressions and sensations so that the evolution of spacecraft can continue addressing the needs of humans in space.

Hostile And Closed Environments, Hazards At Close Quarters
Hostile And Closed Environments, Hazards At Close Quarters

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including hostile and closed environments, like the closed environment of the vehicle itself. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the “Hazards of Human Spaceflight“ website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of hostile and closed environments with Brian Crucian, NASA immunologist at the Johnson Space Center.

Hostile And Closed Environments, Hazards At Close Quarters

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago

All cats are beautiful 🐱❤️

All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
All Cats Are Beautiful 🐱❤️
6 years ago

10 Things: CubeSats — Going Farther

Now that the MarCOs — a pair of briefcase-sized interplanetary CubeSats — seem to have reached their limit far beyond Mars, we’re looking forward to an expanding era of small, versatile and powerful space-based science machines.

Here are ten ways we’re pushing the limits of miniaturized technology to see  just how far it can take us.

image

1. MarCO: The Farthest (So Far)

MarCO, short for Mars Cube One, was the first interplanetary mission to use a class of mini-spacecraft called CubeSats.

The MarCOs — nicknamed EVE and WALL-E, after characters from a Pixar film — served as communications relays during InSight’s November 2018 Mars landing, beaming back data at each stage of its descent to the Martian surface in near-real time, along with InSight’s first image.

WALL-E sent back stunning images of Mars as well, while EVE performed some simple radio science.

All of this was achieved with experimental technology that cost a fraction of what most space missions do: $18.5 million provided by NASA’s Jet Propulsion Laboratory in Pasadena, California, which built the CubeSats.

WALL-E was last heard from on Dec. 29; EVE, on Jan. 4. Based on trajectory calculations, WALL-E is currently more than 1 million miles (1.6 million kilometers) past Mars; EVE is farther, almost 2 million miles (3.2 million kilometers) past Mars.

image

MarCO-B took these images as it approached Mars in November 2018. Credit: NASA/JPL-Caltech

2. What Are CubeSats?

CubeSats were pioneered by California Polytechnic State University in 1999 and quickly became popular tools for students seeking to learn all aspects of spacecraft design and development.

Today, they are opening up space research to public and private entities like never before. With off-the-shelf parts and a compact size that allows them to hitch a ride with other missions — they can, for example, be ejected from the International Space Station, up to six at a time — CubeSats have slashed the cost of satellite development, opening up doors to test new instruments as well as to create constellations of satellites working together.

CubeSats can be flown in swarms, capturing simultaneous, multipoint measurements with identical instruments across a large area. Sampling entire physical systems in this way would drive forward our ability to understand the space environment around us, in the same way multiple weather sensors help us understand global weather systems.

Ready to get started? Check out NASA’s CubeSats 101 Guide.

image

Engineer Joel Steinkraus uses sunlight to test the solar arrays on one of the Mars Cube One (MarCO) spacecraft at NASA’s Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

3. Measuring Up

The size and cost of spacecraft vary depending on the application; some are the size of a pint of ice cream while others, like the Hubble Space Telescope, are as big as a school bus.

Small spacecraft (SmallSats) generally have a mass less than 400 pounds (180 kilograms) and are about the size of a large kitchen fridge.

CubeSats are a class of nanosatellites that use a standard size and form factor.  The standard CubeSat size uses a “one unit” or “1U” measuring 10x10x10 centimeters (or about 4x4x4 inches) and is extendable to larger sizes: 1.5, 2, 3, 6, and even 12U.

image

The Sojourner rover (seen here on Mars in 1997) is an example of small technology that pioneered bigger things. Generations of larger rovers are being built on its success.

4. A Legacy of Small Pathfinders

Not unlike a CubeSat, NASA’s first spacecraft — Explorer 1 — was a small, rudimentary machine. It launched in 1958 and made the first discovery in outer space, the Van Allen radiation belts that surround Earth. It was the birth of the U.S. space program.

In 1997, a mini-rover named Sojourner rolled onto Mars, a trial run for more advanced rovers such as NASA’s Spirit, Opportunity and Curiosity.

Innovation often begins with pathfinder technology, said Jakob Van Zyl, director of the Solar System Exploration Directorate at NASA’s Jet Propulsion Laboratory. Once engineers prove something can be done, science missions follow.

image

5. Testing in Space

NASA is continually developing new technologies — technologies that are smaller than ever before, components that could improve our measurements, on-board data processing systems that streamline data retrievals, or new methods for gathering observations. Each new technology is thoroughly tested in a lab, sometimes on aircraft, or even at remote sites across the world. But the space environment is different than Earth. To know how something is going to operate in space, testing in space is the best option.

Sending something unproven to orbit has traditionally been a risky endeavor, but CubeSats have helped to change that. The diminutive satellites typically take less than two years to build. CubeSats are often a secondary payload on many rocket launches, greatly reducing cost. These hitchhikers can be deployed from a rocket or sent to the International Space Station and deployed from orbit.

Because of their quick development time and easy access to space, CubeSats have become the perfect platform for demonstrating how a new technological advancement will perform in orbit.

image

RainCube is a mini weather satellite, no bigger than a shoebox, that will measure storms. It’s part of several new NASA experiments to track storms from space with many small satellites, instead of individual, large ones. Credit: UCAR

6. At Work in Earth Orbit

A few recent examples from our home world:

RainCube, a satellite no bigger than a suitcase, is a prototype for a possible fleet of similar CubeSats  that could one day help monitor severe storms, lead to improving the accuracy of weather forecasts and track climate change over time.

IceCube tested instruments for their ability to make space-based measurements of the small, frozen crystals that make up ice clouds. Like other clouds, ice clouds affect Earth’s energy budget by either reflecting or absorbing the Sun’s energy and by affecting the emission of heat from Earth into space. Thus, ice clouds are key variables in weather and climate models.

image

Rocket Lab’s Electron rocket lifts off from Launch Complex 1 for the NASA ELaNa19 mission. Credit: Trevor Mahlmann/Rocket Lab

7. First Dedicated CubeSat Launch

A series of new CubeSats is now in space, conducting a variety of scientific investigations and technology demonstrations following a Dec. 17, 2018 launch from New Zealand — the first time CubeSats have launched for NASA on a rocket designed specifically for small payloads.

This mission included 10 Educational Launch of Nanosatellites (ELaNa)-19 payloads, selected by NASA’s CubeSat Launch Initiative:

CubeSat Compact Radiation Belt Explorer (CeREs) — High energy particle measurement in Earth’s radiation belt

Simulation-to-Flight 1 (STF-1) — Software condensing to support CubeSat implementations

Advanced Electrical Bus (ALBus) — Advances in solar arrays and high capacity batteries

CubeSat Handling Of Multisystem Precision Time Transfer (CHOMPTT) — Navigation plans for exo-planetary implementation

CubeSail — Deployment and control of a solar sail blade

NMTSat — Magnetic field, high altitude plasma density

Rsat — Manipulation of robotic arms

Ionospheric Scintillation Explorer (ISX) — Plasma fluctuations in the upper atmosphere

Shields-1 — Radiation shielding

DaVinci — High School to Grade School STEM education

8. The Little CubeSat That Could

CubeSat technology is still in its infancy, with mission success rates hovering near 50 percent. So, a team of scientists and engineers set out on a quest. Their goal? To build a more resilient CubeSat — one that could handle the inevitable mishaps that bedevil any spacecraft, without going kaput.

They wanted a little CubeSat that could.

They got to work in 2014 and, after three years of development, Dellingr was ready to take flight.

Read the Full Story: Dellingr: The Little CubeSat That Could

image

Artist’s concept of Lunar Flashlight. Credit: NASA

9. Going Farther

There are a handful of proposed NASA missions could take CubeSat technology farther:

CUVE would travel to Venus to investigate a longstanding mystery about the planet’s atmosphere using ultraviolet-sensitive instruments and a novel, carbon-nanotube light-gathering mirror.

Lunar Flashlight would use a laser to search for water ice in permanently shadowed craters on the south pole of Earth’s Moon.

Near-Earth Asteroid Scout, a SmallSat, would use a solar sail to propel it to do science on asteroids that pass close to Earth.

All three spacecraft would hitch rides to space with other missions, a key advantage of these compact science machines.

image

Expedition 56 Flight Engineer Serena Auñón-Chancellor installs the NanoRacks Cubesat Deployer-14 (NRCSD-14) on the Multipurpose Experiment Platform inside the Japanese Kibo laboratory module. The NRCSD-14 was then placed in the Kibo airlock and moved outside of the space station to deploy a variety of CubeSats into Earth orbit. Credit: NASA

10. And We’re Just Getting Started

Even if they’re never revived, the team considers MarCO a spectacular success.

A number of the critical spare parts for each MarCO will be used in other CubeSat missions. That includes their experimental radios, antennas and propulsion systems. Several of these systems were provided by commercial vendors, making it easier for other CubeSats to use them as well.

More small spacecraft are on the way. NASA is set to launch a variety of new CubeSats in coming years.

“There’s big potential in these small packages,” said John Baker, the MarCO program manager at JPL. “CubeSats — part of a larger group of spacecraft called SmallSats — are a new platform for space exploration affordable to more than just government agencies.”

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago
Unusual Signal Suggests Neutron Star Destroyed By Black Hole
Unusual Signal Suggests Neutron Star Destroyed By Black Hole
Unusual Signal Suggests Neutron Star Destroyed By Black Hole

Unusual Signal Suggests Neutron Star Destroyed by Black Hole

What created this unusual explosion? Three weeks ago, gravitational wave detectors in the USA and Europe – the LIGO and Virgo detectors – detected a burst of gravitational radiation that had the oscillating pattern expected when a black hole destroys a neutron star. One object in event S190814sv was best fit with a mass greater than five times the mass of the Sun – making it a good candidate for a black hole, while the other object appeared to have a mass less than three times the mass of the Sun – making it a good candidate for a neutron star. No similar event had been detected with gravitational waves before. Unfortunately, no light was seen from this explosion, light that might have been triggered by the disrupting neutron star. It is theoretically possible that the lower mass object was also a black hole, even though no clear example of a black hole with such a low mass is known. The featured video was created to illustrate a previously suspected black hole - neutron star collision detected in light in 2005, specifically gamma-rays from the burst GRB 050724. The animated video starts with a foreground neutron star orbiting a black hole surrounded by an accretion disk. The black hole’s gravity then shreds the neutron star, creating a jet as debris falls into the black hole. S190814sv will continue to be researched, with clues about the nature of the objects involved possibly coming from future detections of similar systems. Illustration Video Credit: NASA, Dana Berry (Skyworks Digital)

  • lenchadora
    lenchadora liked this · 1 year ago
  • wings-scales-fire
    wings-scales-fire reblogged this · 2 years ago
  • omapin
    omapin reblogged this · 2 years ago
  • marlsborohaven
    marlsborohaven liked this · 2 years ago
  • solarsmith49
    solarsmith49 reblogged this · 3 years ago
  • arphenion42
    arphenion42 reblogged this · 3 years ago
  • kagesamavoiddragon
    kagesamavoiddragon liked this · 3 years ago
  • jnm769
    jnm769 liked this · 3 years ago
  • michael-mcdoesntexist
    michael-mcdoesntexist liked this · 3 years ago
  • trippingpossum
    trippingpossum liked this · 3 years ago
  • stormwing119
    stormwing119 liked this · 3 years ago
  • we-are-astronomer
    we-are-astronomer reblogged this · 3 years ago
  • quamatoc
    quamatoc reblogged this · 3 years ago
  • turningthunderintograce
    turningthunderintograce reblogged this · 3 years ago
  • foolycruelly
    foolycruelly reblogged this · 3 years ago
  • foolycruelly
    foolycruelly liked this · 3 years ago
  • girlsgetmewetter
    girlsgetmewetter liked this · 3 years ago
  • guwop07
    guwop07 reblogged this · 3 years ago
  • ubermensch2019
    ubermensch2019 reblogged this · 3 years ago
  • ashke
    ashke reblogged this · 3 years ago
  • tattersby
    tattersby reblogged this · 3 years ago
  • star-gayzin
    star-gayzin reblogged this · 3 years ago
  • nacideluna
    nacideluna liked this · 3 years ago
  • aaronwatershow
    aaronwatershow reblogged this · 3 years ago
  • aaronwatershow
    aaronwatershow liked this · 3 years ago
ocrim1967 - Senza titolo
Senza titolo

185 posts

Explore Tumblr Blog
Search Through Tumblr Tags