The planets beyond our solar system – exoplanets – are so far away, often trillions of miles, that we don’t have the technology to truly see them. Even the best photos show the planets as little more than bright dots. We’ve confirmed more than 5,000 exoplanets, but we think there are billions. Space telescopes like Hubble aren’t able to take photos of these far-off worlds, but by studying them in different wavelengths of light (colors), we’ve learned enough about conditions on these planets that we can illustrate them.
We know, thanks to the now-retired Spitzer Space Telescope, that there is a thick atmosphere on a planet called 55 Cancri e about 40 light-years away. And Hubble found silicate vapor in the atmosphere of this rocky world. We also know it’s scorching-close to its Sun-like star, so … lava. Lots and lots of lava. This planet is just one of the many that the James Webb Space Telescope will soon study, telling us even more about the lava world!
You can take a guided tour of this planet (and others) and see 360-degree simulations at our new Exoplanet Travel Bureau.
Travel to the most exotic destinations in our galaxy, including:
Kepler-16b, a planet with two suns.
Then there’s PSO J318.5-22, a world with no sun that wanders the galaxy alone. The nightlife would never end on a planet without a star.
TRAPPIST-1e, which will also be studied by the Webb Space Telescope, is one of seven Earth-sized planets orbiting a star about 40 light-years from Earth. It’s close enough that, if you were standing on this exoplanet, you could see our Sun as a star in the Leo constellation! You can also see it on the poster below: look for a yellow star to the right of the top person’s eye.
We haven’t found life beyond Earth (yet) but we’re looking. Meanwhile, we can imagine the possibility of red grass and other plants on Kepler-186f, a planet orbiting a red dwarf star.
We can also imagine what it might be like to skydive on a super-Earth about seven times more massive than our home planet. You would fall about 35% faster on a super-Earth like HD 40307g, making for a thrilling ride!
Any traveler is going to want to pick up souvenirs, and we have you covered. You can find free downloads of all the posters here and others! What are you waiting for? Come explore with us!
Make sure to follow us on Tumblr for your regular dose of space!
Image credits: NASA/JPL-Caltech
Got basic questions about the James Webb Space Telescope and what amazing things we’ll learn from it? We’ve got your answers right here!
The James Webb Space Telescope, or Webb, is our upcoming infrared space observatory, which will launch in 2021. It will spy the first luminous objects that formed in the universe and shed light on how galaxies evolve, how stars and planetary systems are born, and how life could form on other planets.
Our James Webb Space Telescope is a giant space telescope that observes infrared light. Rather than a replacement for the Hubble Space Telescope, it’s a scientific successor that will complement and extend its discoveries.
Being able to see longer wavelengths of light than Hubble and having greatly improved sensitivity will let Webb look further back in time to see the first galaxies that formed in the early universe, and to peer inside dust clouds where stars and planetary systems are forming today.
We have yet to observe the era of our universe’s history when galaxies began to form.
We have a lot to learn about how galaxies got supermassive black holes in their centers, and we don't really know whether the black holes caused the galaxies to form or vice versa.
We can't see inside dust clouds with high resolution, where stars and planets are being born nearby, but Webb will be able to do just that.
We don't know how many planetary systems might be hospitable to life, but Webb could tell whether some Earth-like planets have enough water to have oceans.
We don't know much about dark matter or dark energy, but we expect to learn more about where the dark matter is now, and we hope to learn the history of the acceleration of the universe that we attribute to dark energy.
And then, there are the surprises we can't imagine!
By viewing the universe at infrared wavelengths with such sensitivity, Webb will show us things never before seen by any other telescope. For example, it is only at infrared wavelengths that we can see the first stars and galaxies forming after the Big Bang.
And it is with infrared light that we can see stars and planetary systems forming inside clouds of dust that are opaque to visible light, such as in the above visible and infrared light comparison image of the Carina Nebula.
YES, Webb will take amazing pictures! We are going to be looking at things we've never seen before and looking at things we have seen before in completely new ways.
The beauty and quality of an astronomical image depends on two things: the sharpness and the number of pixels in the camera. On both of these counts, Webb is very similar to, and in many ways better than, Hubble.
Additionally Webb can see orange and red visible light. Webb images will be different, but just as beautiful as Hubble's. Above, there is another comparison of infrared and visible light Hubble images, this time of the Monkey Head Nebula.
The first targets for Webb will be determined through a process similar to that used for the Hubble Space Telescope and will involve our experts, the European Space Agency (ESA), the Canadian Space Agency (CSA), and scientific community participants.
The first engineering target will come before the first science target and will be used to align the mirror segments and focus the telescope. That will probably be a relatively bright star or possibly a star field.
Webb is designed to look deeper into space to see the earliest stars and galaxies that formed in the universe and to look deep into nearby dust clouds to study the formation of stars and planets.
In order to do this, Webb has a much larger primary mirror than Hubble (2.5 times larger in diameter, or about 6 times larger in area), giving it more light-gathering power. It also will have infrared instruments with longer wavelength coverage and greatly improved sensitivity than Hubble.
Finally, Webb will operate much farther from Earth, maintaining its extremely cold operating temperature, stable pointing and higher observing efficiency than with the Earth-orbiting Hubble.
Webb will be able to tell us the composition of the atmospheres of planets outside our solar system, aka exoplanets. It will observe planetary atmospheres through the transit technique. A transit is when a planet moves across the disc of its parent star.
Webb will also carry coronographs to enable photography of exoplanets (planets outside our solar system) near bright stars (if they are big and bright and far from the star), but they will be only "dots," not grand panoramas. Coronographs block the bright light of stars, which could hide nearby objects like exoplanets.
Consider how far away exoplanets are from us, and how small they are by comparison to this distance! We didn’t even know what Pluto really looked like until we were able to send an observatory to fly right near it in 2015, and Pluto is in our own solar system!
Yes! Webb will be able to observe the planets at or beyond the orbit of Mars, satellites, comets, asteroids and objects in the distant, icy Kuiper Belt.
Many important molecules, ices and minerals have strong characteristic signatures at the wavelengths Webb can observe.
Webb will also monitor the weather of planets and their moons.
Because the telescope and instruments have to be kept cold, Webb’s protective sunshield will block the inner solar system from view. This means that the Sun, Earth, Moon, Mercury, and Venus, and of course Sun-grazing comets and many known near-Earth objects cannot be observed.
Webb will be able to see what the universe looked like around a quarter of a billion years (possibly back to 100 million years) after the Big Bang, when the first stars and galaxies started to form.
Webb will launch in 2021 from French Guiana on a European Space Agency Ariane 5 rocket.
Webb’s mission lifetime after launch is designed to be at least 5-1/2 years, and could last longer than 10 years. The lifetime is limited by the amount of fuel used for maintaining the orbit, and by the possibility that Webb’s components will degrade over time in the harsh environment of space.
Looking for some more in-depth FAQs? You can find them HERE.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
IMAGE CREDITS Carina Nebula: ESO/T. Preibisch Monkey Head Nebula: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and J. Hester
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Onboard the International Space Station, astronauts need to work out to maintain their bone density and muscle mass, usually exercising 2 hours every single day. Throughout the week, they exercise on three different pieces of equipment--a bike, a treadmill and the Advanced Restive Exercise Device (ARED).
All these devices are needed to keep an astronaut healthy.
However, deep-space vehicles like our Orion Spacecraft aren’t as roomy as station, so everything — including exercise equipment — needs to be downsized. The Miniature Exercise Device (MED-2) is getting us one step closer to being able to keep astronauts’ bodies healthy on long journeys to the moon, Mars and beyond.
MED-2 is a compact, all-in-one exercise device that we developed and will be launching to the space station Tuesday, March 22. Onboard the station, we’ll see how MED-2 will perform in microgravity and how it will need to be further adapted for our Journey to Mars. However, it’s already pretty well equipped for deep space missions.
1. It is an all-in-one exercise device, meaning it can do both aerobic and resistive workouts. When we go to Mars, the less equipment we need, the better.
2. It's incredibly light. The MED-2 weighs only 65 pounds, and every pound counts during space missions.
3. It has 5 - 350 pounds of resistance, despite weighing only 65 pounds. Astronauts don’t all lift the same amount, making the flexibility in MED-2’s “weights” essential.
4. It's tiny. (Hence its name Miniature Exercise Device.) Not only is MED-2 incredibly light, but it also won't take up a lot of space on any craft.
5. It powers itself. During an aerobic workout, the device charges, and then that power is used to run the resistive exercises. When traveling to space, it's good when nothing goes to waste, and now astronauts' workouts will help power the Journey to Mars.
MED-2 is only one of many devices and experiments flying on Orbital ATK’s Cygnus spacecraft. To find out more about the science on the space station, follow @ISS_Research and @Space_Station on Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Martian helicopters? Electric planes? Quiet supersonic flight?
The flight technologies of tomorrow are today’s reality at NASA. We’re developing a number of innovations that promise to change the landscape (skyscape?) of aviation. Here are five incredible aeronautic technologies currently in development:
It might sound like an oxymoron, but ‘quiet boom’ technology is all the rage with our Aeronautics Mission Directorate. The X-59 QueSST is an experimental supersonic jet that hopes to reduce the sound of a supersonic boom to a gentle thump. We will gauge public reaction to this ‘sonic thump,’ evaluating its potential impact if brought into wider use. Ultimately, if the commercial sector incorporates this technology, the return of supersonic passenger flight may become a reality!
Electric cars? Pfft. We’re working on an electric PLANE. Modified from an existing general aviation aircraft, the X-57 will be an all-electric X-plane, demonstrating a leap-forward in green aviation. The plane seeks to reach a goal of zero carbon emissions in flight, running on batteries fed by renewable energy sources!
Our Search and Rescue office develops technologies for distress beacons and the space systems that locate them. Their new constellation of medium-Earth orbit instruments can detect a distress call near-instantaneously, and their second-generation beacons, hitting shelves soon, are an order of magnitude more accurate than the previous generation!
(The Search and Rescue office also recently debuted a coloring book that doesn’t save lives but will keep your crayon game strong.)
Earth science? We got it.
We don’t just use satellite technology to monitor our changing planet. We have a number of missions that monitor Earth’s systems from land, sea and air. In the sky, we use flying laboratories to assess things like air pollution, greenhouse gasses, smoke from wildfires and so much more. Our planet may be changing, but we have you covered.
No. Not that icing.
Much better.
Though we at NASA are big fans of cake frosting, that’s not the icing we’re researching. Ice that forms on a plane mid-flight can disrupt the airflow around the plane and inside the engine, increasing drag, reducing lift and even causing loss of power. Ice can also harm a number of other things important to a safe flight. We’re developing tools and methods for evaluating and simulating the growth of ice on aircraft. This will help aid in designing future aircraft that are more resilient to icing, making aviation safer.
There you have it, five technologies taking aeronautics into the future, safely down to the ground and even to other planets! To stay up to date on the latest and greatest in science and technology, check out our website: www.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
NGC 1706, captured in this image by our Hubble Space Telescope, belongs to something known as a galaxy group, which is just as the name suggests — a group of up to 50 galaxies which are gravitationally bound and relatively close to each other.
Our home galaxy, the Milky Way, has its own squad — known as the Local Group, which also contains the Andromeda galaxy, the Large and Small Magellanic clouds and the Triangulum galaxy.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Using biofuels to help power jet engines reduces particle emissions in their exhaust by as much as 50 to 70 percent, according to a new study that bodes well for airline economics and Earth’s atmosphere.
All of the aircraft, researchers and flight operations people who made ACCESS II happen. Credits: NASA/Tom Tschida
The findings are the result of a cooperative international research program led by NASA and involving agencies from Germany and Canada, and are detailed in a study published in the journal Nature.
The view from inside NASA's HU-25C Guardian sampling aircraft from very close behind the DC-8. Credits: NASA/SSAI Edward Winstead
Our flight tests collected information about the effects of alternative fuels on engine performance, emissions and aircraft-generated contrails – essentially, human-made clouds - at altitudes flown by commercial airliners.
The DC-8's four engines burned either JP-8 jet fuel or a 50-50 blend of JP-8 and renewable alternative fuel of hydro processed esters and fatty acids produced from camelina plant oil. Credits: NASA/SSAI Edward Winstead
Contrails are produced by hot aircraft engine exhaust mixing with the cold air that is typical at cruise altitudes several miles above Earth's surface, and are composed primarily of water in the form of ice crystals.
Matt Berry (left), a flight operations engineer at our Armstrong Flight Research Center, reviews the flight plan with Principal Investigator Bruce Anderson. Credits: NASA/Tom Tschida
Researchers are interested in contrails because they create clouds that would not normally form in the atmosphere, and are believed to influence Earth’s environment.
The alternative fuels tested reduced those emissions. That’s important because contrails have a larger impact on Earth’s atmosphere than all the aviation-related carbon dioxide emissions since the first powered flight by the Wright Brothers.
This photo, taken May 14, 2014, is from the CT-133 aircraft of research partner National Research Council of Canada. It shows the NASA HU-25C Guardian aircraft flying 250 meters behind NASA's DC-8 aircraft before it descends into the DC-8's exhaust plumes to sample ice particles and engine emissions. Credit: National Research Council of Canada
Researchers plan on continuing these studies to understand the benefits of replacing current fuels in aircraft with biofuels.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
And we’re live!!!
NASA Astronaut Serena Auñoń Chancellor is here answering your questions during this Tumblr Answer Time. Tune in and join the fun!
Tumblr, this is Houston speaking! The flight directors Answer Time with Chloe Mehring and Diane Dailey is live. Stay tuned to learn about what happens in mission control, how to become a flight director, and what Hollywood sometimes gets wrong about the job. View ALL the answers HERE.
Make sure to follow us on Tumblr for your regular dose of space!
“I was in love with the beauty of space. It was my introduction to appreciating the beauty of complex, chaotic things—black holes, giant gas planets, or killer asteroids—that got my imagination riled up.“ -Christina Hernandez
Christina Hernandez, a space enthusiast and self-proclaimed nerd, is an aerospace engineer at our Jet Propulsion Laboratory in California where she works as an instrument engineer on our newest rover mission – Mars2020. The Mars2020 rover is a robotic scientist that is launching to the Red Planet next year. If you would like to launch to the Red Planet as well, you can Send Your Name to Mars along with millions of other people! Christina’s job is to make sure that the instruments we send to the Martian surface are designed, built, tested and operated correctly so we can retrieve allll the science. When she isn’t building space robots, she loves exploring new hiking trails, reading science fiction and experimenting in the kitchen. Christina took a break from building our next Martian scientist to answer some questions about her life and her career:
Only if I had a round trip ticket! I like the tacos and beach here on Earth too much. If I could go, I would bring a bag of Hot Cheetos, a Metallica album, and the book On the Shoulders of Giants.
Pilas, a reference to a phrase my family says a lot, ponte las pilas. It literally means put your batteries on or in other words, get to work, look alive or put some energy into it. Our rover is going to need to have her batteries up and running for all the science she is going to be doing! Luckily, the rover has a radioisotope thermoelectric generator (RTG) to help keep the batteries charged!
It’s been seeing three of the instruments I worked on getting bolted and connected to the flight rover. I’ll never forget seeing the first 1’s and 0’s being exchanged between the rover compute element (RCE), the rover’s on-board brain, and the instruments’ electronics boxes (their brains). I am sure it was a wonderful conversation between the two!
Metallica, The Cure, Queen, Echo and the Bunnymen, Frank Sinatra, Ramon Ayala, AC/DC, Selena, Los Angeles Azules, ughhhh – I think I just need a Spotify subscription to Mars.
Take your ego out of the solution space when problem solving.
I love reading. Each year I read a minimum of 20 books, with my goal this year being 30 books. It’s funny I increased my goal during what has definitely been my busiest year at work. I recently got into watercolor painting. After spending so much time connected at work, I started looking for more analog hobbies. I am a terrible painter right now, but I painted my first painting the other day. It was of two nebulas! It’s not too bad! I am hoping watercolor can help connect me more to the color complexities of nature...and it’s fun!
I would love to work on designs for planetary human explorers. So far, I have focused on robotic explore, but when you throw a “loveable, warm, squishy thing” into the loop, its creates a different dimension to design – both with respect to operability and risk.
Thanks so much Christina! The Mars2020 rover is planned to launch on July 17, 2020, and touch down in Jezero crater on Mars on February 18, 2021.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
how much (or are you at all) treated differently for being a women in your field? I know it’s a different experience for everyone and I just wanted to hear your perspective
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts