Last Glacier Standing In Venezuela

Last Glacier Standing in Venezuela

In 1910, glaciers covered at least 4 square miles (10 square km) of the mountainous region of northwestern Venezuela. Today, less than one percent of that ice remains, and all of it is locked up in one glacier. The ongoing retreat of Humboldt Glacier—Venezuela’s last patch of perennial ice—means that the country could soon be glacier-free.

image

The glacier is in the highest part of the Andes Mountains, on a slope at nearly 16,000 feet. A cold and snowy climate at high elevations is key for glaciers to exist in the tropics. Most of Earth’s tropical glaciers are found in the Andes, which runs through Venezuela, Colombia, Ecuador, Peru and Bolivia. But warming air temperatures have contributed to their decline, including Humboldt Glacier.

The relatively recent changes to Humboldt are evident in these images, acquired on Jan. 20, 1988, by the United States Geological Survey’s Landsat 5 and on Jan. 6, 2015, by Landsat 8. The images are false-color to better differentiate between areas of snow and ice (blue), land (brown) and vegetation (green).

Scientists are trying to understand how long Humboldt will remain. One said: “Let’s call it no more than 10 to 20 years.”

Read more: https://go.nasa.gov/2NuYcg6

More Posts from Nasa and Others

5 years ago

Weird Magnetic Behavior in Space

In between the planets, stars and other bits of rock and dust, space seems pretty much empty. But the super-spread out matter that is there follows a different set of rules than what we know here on Earth.

For the most part, what we think of as empty space is filled with plasma. Plasma is ionized gas, where electrons have split off from positive ions, creating a sea of charged particles. In most of space, this plasma is so thin and spread out that space is still about a thousand times emptier than the vacuums we can create on Earth. Even still, plasma is often the only thing out there in vast swaths of space — and its unique characteristics mean that it interacts with electric and magnetic fields in complicated ways that we are just beginning to understand.

image

Five years ago, we launched a quartet of satellites to study one of the most important yet most elusive behaviors of that material in space — a kind of magnetic explosion that had never before been adequately studied up close, called magnetic reconnection. Here are five of the ways the Magnetospheric Multiscale mission (MMS) has helped us study this intriguing magnetic phenomenon.

1. Seeing magnetic explosions up close

Magnetic reconnection is the explosive snapping and forging of magnetic fields, a process that can only happen in plasmas — and it's at the heart of space weather storms that manifest around Earth.

When the Sun launches clouds of solar material — which is also made of plasma — toward Earth, the magnetic field embedded within the material collides with Earth's huge global magnetic field. This sets off magnetic reconnection that injects energy into near-Earth space, triggering a host of effects — induced electric currents that can harm power grids, to changes in the upper atmosphere that can affect satellites, to rains of particles into the atmosphere that can cause the glow of the aurora.  

image

Though scientists had theorized about magnetic reconnection for decades, we'd never had a chance to study it on the small scales at which it occurs. Determining how magnetic reconnection works was one of the key jobs MMS was tasked with — and the mission quickly delivered. Using instruments that measured 100 times faster than previous missions, the MMS observations quickly determined which of several 50-year-old theories about magnetic reconnection were correct. It also showed how the physics of electrons dominates the process — a subject of debate before the launch.

2. Finding explosions in surprising new places

In the five years after launch, MMS made over a thousand trips around Earth, passing through countless magnetic reconnection events. It saw magnetic reconnection where scientists first expected it: at the nose of Earth's magnetic field, and far behind Earth, away from the Sun. But it also found this process in some unexpected places — including a region thought to be too tumultuous for magnetic reconnection to happen.

As solar material speeds away from the Sun in a flow called the solar wind, it piles up as it encounters Earth's magnetic field, creating a turbulent region called the magnetosheath. Scientists had only seen magnetic reconnection happening in relatively calm regions of space, and they weren't sure if this process could even happen in such a chaotic place. But MMS' precise measurements revealed that magnetic reconnection happens even in the magnetosheath.  

image

MMS also spotted magnetic reconnection happening in giant magnetic tubes, leftover from earlier magnetic explosions, and in plasma vortices shaped like ocean waves — based on the mission's observations, it seems magnetic reconnection is virtually ubiquitous in any place where opposing magnetic fields in a plasma meet.  

3. How energy is transferred

Magnetic reconnection is one of the major ways that energy is transferred in plasma throughout the universe — and the MMS mission discovered that tiny electrons hold the key to this process.

Electrons in a strong magnetic field usually exhibit a simple behavior: They spin tight spirals along the magnetic field. In a weaker field region, where the direction of the magnetic field reverses, the electrons go freestyle — bouncing and wagging back and forth in a type of movement called Speiser motion.

image

Flying just 4.5 miles apart, the MMS spacecraft measured what happens in a magnetic field with intermediate strength: These electrons dance a hybrid, meandering motion — spiraling and bouncing about before being ejected from the region. This takes away some of the magnetic field’s energy.

4. Surpassing computer simulations

Before we had direct measurements from the MMS mission, computer simulations were the best tool scientists had to study plasma's unusual magnetic behavior in space. But MMS' data has revealed that these processes are even more surprising than we thought — showing us new electron-scale physics that computer simulations are still trying to catch up with. Having such detailed data has spurred theoretical physicists to rethink their models and understand the specific mechanisms behind magnetic reconnection in unexpected ways. 

image

5. In deep space & nuclear reactions

Although MMS studies plasma near Earth, what we learn helps us understand plasma everywhere. In space, magnetic reconnection happens in explosions on the Sun, in supernovas, and near black holes.

These magnetic explosions also happen on Earth, but only under the most extreme circumstances: for example, in nuclear fusion experiments. MMS' measurements of plasma's behavior are helping scientists better understand and potentially control magnetic reconnection, which may lead to improved nuclear fusion techniques to generate energy more efficiently.

image

This quartet of spacecraft was originally designed for a two-year mission, and they still have plenty of fuel left — meaning we have the chance to keep uncovering new facets of plasma's intriguing behavior for years to come. Keep up with the latest on the mission at nasa.gov/mms.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

What’s That in the Night Sky?

The night sky has really been showing off lately. During the past week, we’ve had the chance to see some amazing sights by simply just looking up!

On Wednesday, Dec. 29, we were greeted by a flyby of the International Space Station over much of the east coast.

When the space station flies overhead, it’s usually easy to spot because it’s the third brightest object in the night sky. You can even enter your location into THIS website and get a list of dates/times when it will be flying over you!

One of our NASA Headquarters Photographers ventured to the Washington National Cathedral to capture the pass in action.

image

Then, on Saturday, Dec. 2, just one day before the peak of this month’s supermoon, the space station was seen passing in front of the Moon. 

Captured by another NASA HQ Photographer, this composite image shows the space station, with a crew of six onboard, as its silhouette transits the Moon at roughly five miles per second.

image

Here’s an animated version of the transit.

image

To top off all of this night sky greatness, are these beautiful images of the Dec. 3 supermoon. This marked the first of three consecutive supermoons taking the celestial stage. The two others will occur on Jan. 1 and Jan. 31, 2018.

image

A supermoon occurs when the moon’s orbit is closest to Earth at the same time that it is full.

image

Are you this pilot? An aircraft taking off from Ronald Reagan National Airport is seen passing in front of the Moon as it rose on Sunday.

Learn more about the upcoming supermoons: 

To learn more about what you can expect to spot in the sky this month, visit: https://solarsystem.nasa.gov/news/2017/12/04/whats-up-december-2017

Discover when the International Space Station will be visible over your area by visiting: https://spotthestation.nasa.gov/

Learn more about our Moon at: https://moon.nasa.gov/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
7 years ago

Voyager: The Space Between

Our Voyager 1 spacecraft officially became the first human-made object to venture into interstellar space in 2012. 

image

Whether and when our Voyager 1 spacecraft broke through to interstellar space, the space between stars, has been a thorny issue. 

In 2012, claims surfaced every few months that Voyager 1 had “left our solar system.” Why had the Voyager team held off from saying the craft reached interstellar space until 2013?

image

Basically, the team needed more data on plasma, which is an ionozied gas that exists throughout space. (The glob of neon in a storefront sign is an example of plasma).

image

Plasma is the most important marker that distinguishes whether Voyager 1 is inside the solar bubble, known as the heliosphere.  The heliosphere is defined by the constant stream of plasma that flows outward from our Sun – until it meets the boundary of interstellar space, which contains plasma from other sources.

image

Adding to the challenge: they didn’t know how they’d be able to detect it.

No one has been to interstellar space before, so it’s  like traveling with guidebooks that are incomplete.

Additionally, Voyager 1’s plasma instrument, which measures the density, temperature and speed of plasma, stopped working in 1980, right after its last planetary flyby.

image

When Voyager 1 detected the pressure of interstellar space on our heliosphere in 2004, the science team didn’t have the instrument that would provide the most direct measurements of plasma. 

Voyager 1 Trajectory

Instead, they focused on the direction of the magnetic field as a proxy for source of the plasma. Since solar plasma carries the magnetic field lines emanating from the Sun and interstellar plasma carries interstellar magnetic field lines, the directions of the solar and interstellar magnetic fields were expected to differ.

Voyager 2 Trajectory

In May 2012, the number of galactic cosmic rays made its first significant jump, while some of the inside particles made their first significant dip. The pace of change quickened dramatically on July 28, 2012. After five days, the intensities returned to what they had been. This was the first taste test of a new region, and at the time Voyager scientists thought the spacecraft might have briefly touched the edge of interstellar space.

image

By Aug. 25, when, as we now know, Voyager 1 entered this new region for good, all the lower-energy particles from inside zipped away. Some inside particles dropped by more than a factor of 1,000 compared to 2004. However, subsequent analysis of the magnetic field data revealed that even though the magnetic field strength jumped by 60% at the boundary, the direction changed less than 2 degrees. This suggested that Voyager 1 had not left the solar magnetic field and had only entered a new region, still inside our solar bubble, that had been depleted of inside particles.

image

Then, in April 2013, scientists got another piece of the puzzle by chance. For the first eight years of exploring the heliosheath, which is the outer layer of the heliosphere, Voyager’s plasma wave instrument had heard nothing. But the plasma wave science team had observed bursts of radio waves in 1983 and 1984 and again in 1992 and 1993. They determined these bursts were produced by the interstellar plasma when a large outburst of solar material would plow into it and cause it to oscillate.

image

It took about 400 days for such solar outbursts to reach interstellar space, leading to an estimated distance of 117 to 177 AU (117 to 177 times the distance from the Sun to the Earth) to the heliopause.

Then on April 9, 2013, it happened: Voyager 1’s plasma wave instrument picked up local plasma oscillations. Scientists think they probably stemmed from a burst of solar activity from a year before. The oscillations increased in pitch through May 22 and indicated that Voyager was moving into an increasingly dense region of plasma.

The above soundtrack reproduces the amplitude and frequency of the plasma waves as “heard” by Voyager 1. The waves detected by the instrument antennas can be simply amplified and played through a speaker. These frequencies are within the range heard by human ears.

image

When they extrapolated back, they deduced that Voyager had first encountered this dense interstellar plasma in Aug. 2012, consistent with the sharp boundaries in the charged particle and magnetic field data on Aug. 25.

In the end, there was general agreement that Voyager 1 was indeed outside in interstellar space, but that location comes with some disclaimers. They determined the spacecraft is in a mixed transitional region of interstellar space. We don’t know when it will reach interstellar space free from the influence of our solar bubble.

image

Voyager 1, which is working with a finite power supply, has enough electrical power to keep operating the fields and particles science instruments through at least 2020, which will make 43 years of continual operation.

image

Voyager 1 will continue sending engineering data for a few more years after the last science instrument is turned off, but after that it will be sailing on as a silent ambassador. 

In about 40,000 years, it will be closer to the star AC +79 3888 than our own Sun.

And for the rest of time, Voyager 1 will continue orbiting around the heart of the Milky Way galaxy, with our Sun but a tiny point of light among many.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Five Technologies Taking Aeronautics into the Future

Martian helicopters? Electric planes? Quiet supersonic flight?

The flight technologies of tomorrow are today’s reality at NASA. We’re developing a number of innovations that promise to change the landscape (skyscape?) of aviation. Here are five incredible aeronautic technologies currently in development:

image

 1. The X-59 QueSST and Quiet Supersonic Technology

It might sound like an oxymoron, but ‘quiet boom’ technology is all the rage with our Aeronautics Mission Directorate. The X-59 QueSST is an experimental supersonic jet that hopes to reduce the sound of a supersonic boom to a gentle thump. We will gauge public reaction to this ‘sonic thump,’ evaluating its potential impact if brought into wider use. Ultimately, if the commercial sector incorporates this technology, the return of supersonic passenger flight may become a reality!

image

 2. The X-57 Electric Plane

Electric cars? Pfft. We’re working on an electric PLANE. Modified from an existing general aviation aircraft, the X-57 will be an all-electric X-plane, demonstrating a leap-forward in green aviation. The plane seeks to reach a goal of zero carbon emissions in flight, running on batteries fed by renewable energy sources!

image

3. Second-Generation Search and Rescue Beacons

Our Search and Rescue office develops technologies for distress beacons and the space systems that locate them. Their new constellation of medium-Earth orbit instruments can detect a distress call near-instantaneously, and their second-generation beacons, hitting shelves soon, are an order of magnitude more accurate than the previous generation!

(The Search and Rescue office also recently debuted a coloring book that doesn’t save lives but will keep your crayon game strong.)

image

4. Earth from the Air

Earth science? We got it.

We don’t just use satellite technology to monitor our changing planet. We have a number of missions that monitor Earth’s systems from land, sea and air. In the sky, we use flying laboratories to assess things like air pollution, greenhouse gasses, smoke from wildfires and so much more. Our planet may be changing, but we have you covered.

image

5. Icing Research

No. Not that icing.

image

Much better.

Though we at NASA are big fans of cake frosting, that’s not the icing we’re researching. Ice that forms on a plane mid-flight can disrupt the airflow around the plane and inside the engine, increasing drag, reducing lift and even causing loss of power. Ice can also harm a number of other things important to a safe flight. We’re developing tools and methods for evaluating and simulating the growth of ice on aircraft. This will help aid in designing future aircraft that are more resilient to icing, making aviation safer.

There you have it, five technologies taking aeronautics into the future, safely down to the ground and even to other planets! To stay up to date on the latest and greatest in science and technology, check out our website: www.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Our Asteroid-Bound Mission is Set to Slingshot Around Earth

NASA’s first spacecraft to travel to an asteroid will get a boost from Earth tomorrow, Sept. 22. 

Earth's gravity is going to slingshot OSIRIS-REx toward its target, an asteroid named Bennu.

image

Asteroids are relatively small, inactive, rocky bodies that orbit around the Sun. Scientists think asteroids like Bennu may have collided with Earth a long time ago, seeding our planet with the organic compounds that made life possible. That means that there's a good chance Bennu contains answers to fundamental questions about the origins of life and how our solar system came to be. We sent OSIRIS-REx on a journey to investigate.

image

One of the best ways to change the trajectory of a spacecraft is by using the gravity of a planet or large moon to catapult it. It sounds like science fiction, but this type of maneuver, called a gravity assist, is a fuel-efficient way of traveling through space.

We’re not using the slingshot to speed the spacecraft, we’re doing it to change its direction. That’s because the asteroid’s orbit is tilted six degrees in comparison to Earth's orbit. When OSIRIS-REx swings by, Earth's gravity will lift it up and sling it toward Bennu.

image

Spot the spacecraft

Because at its closest approach OSIRIS-REx will only be 11,000 miles above Earth, you can see it with a backyard telescope. For most observers, the spacecraft will appear between the constellations Cetus and Pisces, but its exact position in the sky will vary by location.

image

For specifics on locating and photographing OSIRIS-REx, visit our Spot the Spacecraft page.

Wave to OSIRIS-REx

image

After its closest approach, OSIRIS-REx flip around and look back at Earth, so here's your chance to say hello! Take a picture of yourself or your group waving to OSIRIS-REx. Then share your photo using the hashtag #HelloOSIRISREx and tag the mission account on Twitter @OSIRISREx or Instagram @OSIRIS_REx.

image

To Bennu and back

In about a year from now, OSIRIS-REx will arrive at asteroid Bennu.

image

After it surveys and maps Bennu, OSIRIS-REx will "high-five" the asteroid with its robotic arm to collect a sample, which it will send to Earth. This asteroid sample will be the largest amount of space material transported to Earth since we brought back rocks from the Moon. High-fives all around!

If everything goes according to plan, on Sept. 24, 2023, the capsule containing the asteroid sample will make a soft landing in the Utah desert. That’s the end of the spacecraft’s seven-year-long journey to Bennu and back.

But the mission doesn't stop there. On Earth, the sample material collected by OSIRIS-REx will be analyzed to determine the asteroid's chemical composition. Scientists will look for organic compounds like amino acids and sugars — the building blocks for life. 

image

Bennu is approximately 4.5 billion years old. Our solar system is 4.6 billion years old. That means that Bennu is made up of some of the oldest stuff in our solar system. So samples from Bennu could tell us more about how our solar system evolved and possibly even how life began on Earth! Learn more about asteroid Bennu, the OSIRIS-REx mission and the Earth gravity assist. 

Follow the mission on Facebook and Twitter for the latest updates. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

8 years ago

Juno: Join the Mission!

Our Juno spacecraft may be millions of miles from Earth, but that doesn’t mean you can’t get involved with the mission and its science. Here are a few ways that you can join in on the fun:

Juno Orbit Insertion

image

This July 4, our solar-powered Juno spacecraft arrives at Jupiter after an almost five-year journey. In the evening of July 4, the spacecraft will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour so it can be captured into the gas giant’s orbit. Watch live coverage of these events on NASA Television:

Pre-Orbit Insertion Briefing Monday, July 4 at 12 p.m. EDT

Orbit Insertion Coverage Monday, July 4 at 10:30 p.m. EDT

Join Us On Social Media

image

Orbit Insertion Coverage Facebook Live Monday, July 4 at 10:30 p.m. EDT

Be sure to also check out and follow Juno coverage on the NASA Snapchat account!

JunoCam

image

The Juno spacecraft will give us new views of Jupiter’s swirling clouds, courtesy of its color camera called JunoCam. But unlike previous space missions, professional scientists will not be the ones producing the processed views, or even choosing which images to capture. Instead, the public will act as a virtual imaging team, participating in key steps of the process, from identifying features of interest to sharing the finished images online.

image

After JunoCam data arrives on Earth, members of the public will process the images to create color pictures. Juno scientists will ensure JunoCam returns a few great shots of Jupiter’s polar regions, but the overwhelming majority of the camera’s image targets will be chosen by the public, with the data being processed by them as well. Learn more about JunoCam HERE.

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Astronaut Journal Entry - Week 12

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Wow, time has gone by extremely fast. The mid-deployment phase will be short-lived for me this time, as the new crew (Drew Feustel, Ricky Arnold, and Oleg Artemyev) will arrive on March 23rd, and then we have at least one spacewalk on the 29th, followed by a planned SpaceX Dragon cargo craft arrival on the 4th of April. It’s a little strange being up here with only two other crewmates. We are still very busy, but the overall work effort is half of what it was just a week ago. My crewmate, Nemo (Norishige Kanai), and I are trying to use the time to prepare for the upcoming very busy schedule, and we have been having some great success getting a ton of details taken care of.  

image

Yesterday I had a funny event, though. I was controlling a robot named “Justin” who was located in Munich. The research and demonstration events were so interesting and fun that I offered them my lunch hour to do an additional protocol and have a longer debrief session. The ground team responded happily and accepted the offer – any extra time with crew onboard the International Space Station (ISS) is valuable to our programs. Halfway through the event, the team needed a few minutes to shut down and restart the robot, and I surmised that since I was skipping my break, this would be a good time to use the toilet. And I did, use the toilet. And literally 3 minutes later I returned, waited another 2 minutes for the robot systems to connect, and we began another great session controlling Justin from ISS with no loss to science. 

Later that same day, I was approached by the ground team in Houston (not the test team I was working with in Munich) and queried if something was wrong, and why did I have to take a toilet break while we were executing valuable science? They were concerned that I might have a medical issue, as taking a break in the middle of some very valuable science is not normal for us to do while on ISS. It’s nice to know that we have literally hundreds of highly-trained professionals looking out for us.

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
9 years ago

Solar System: 5 Things To Know This Week

We live during one of the great eras of exploration. At this very moment, there are dozens of spacecraft surveying the solar system, from Mars, to Saturn, to Pluto and beyond. What’s more, you can ride along with these expeditions — all you need is an internet connection to see the latest discoveries from deep space. Here are a few essential resources for the armchair astronaut:

1. It’s Like Facebook, but for Planets

image

Or is it more of a Hitchhiker’s Guide to the Solar System? Whatever you want to call it, our Planets page offers quick rundowns, as well as in-depth guides, for all the major bodies in the solar system. Explore from the sun all they way out to the Oort Cloud.

2. Robots to the Rescue

image

Saturn looks spectacular through a telescope, but there’s only so much you can learn about it from the ground. Going there in person is tough, too. While we are now preparing to send astronauts beyond Earth orbit, a human mission to Saturn won’t be possible in the near future. That’s where the space robots come in. For example, the Cassini spacecraft studies Saturn and its moons up close, sometimes even doing things like flying right through the geyser plumes of the ice moon Enceladus. See all the solar system missions, past and present, where they went and what they’ve seen HERE.

3. Keep Your Eyes on This One

Solar System: 5 Things To Know This Week

If you still haven’t tried Eyes on the Solar System, you’re missing out. This online simulation lets you tour the planets and track the past, current and future positions of spacecraft — right in your web browser, all in 3D. Eyes on the Solar System uses real NASA data to help you take a virtual flight across both space and time.

4. Images in the Raw

image

You don’t have to wait for a news release to see pictures from planetary missions. Some missions allow you to see raw, unprocessed images sent straight from the spacecraft. What these images lack in explanatory captions they make up for in freshness — sometimes you can see pictures from Mars or Saturn that are mere hours old. There’s something exhilarating about being among the first human beings ever to see an alien landscape. Peruse our new raw image pages HERE.

5. Bring It On Home

image

After you’ve toured the far reaches of the solar system, you can always come home again. When you have spent time studying the harsh conditions of our neighboring planets, the charms of a unique paradise come into sharp focus, the place we call Earth. Watch a real-time video feed from Earth orbit HERE. You can also see a daily global view of our planet from a million miles away HERE. Download THIS Earth Now mobile app to hold the planet in your hands.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Black (Hole) Friday!

It’s Black Friday, but for us, it’s the annual Black Hole Friday! Today, we’ll post awesome images and information about black holes.

image

A black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space…sort of like all of those shoppers trying to fit into the department stores today.

Because no light can get out, people can’t see black holes. They are invisible. Space telescopes with special tools can help find black holes (sort of how those websites help you find shopping deals).

image

How big are black holes? Black holes can be big or small…just like the lines in all of the stores today. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain! Mass is the amount of matter, or “stuff”, in an object.

image

So how do black holes form? Scientists think the smallest black holes formed when the universe began. Stellar black holes are made when the center of a very big star falls upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space. Scientists think supermassive black holes were made at the same time as the galaxy they are in.

For more fun facts and information about black holes, be sure to follow us on social media.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Craving some summer Sun? We're inviting people around the world to submit their names to be placed on a microchip that will travel to the Sun aboard Parker Solar Probe! 

Launching summer 2018, Parker Solar Probe will be our first mission to "touch" a star. The spacecraft - about the size of a small car - will travel right through the Sun's atmosphere, facing brutal temperatures and radiation as it traces how energy and heat move through the solar corona and explores what accelerates the solar wind and solar energetic particles.

Send your name along for the ride at go.nasa.gov/HotTicket! Submissions will be accepted through April 27, 2018. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • missionprintstudio
    missionprintstudio reblogged this · 5 months ago
  • in-the-mists
    in-the-mists liked this · 3 years ago
  • dogin8
    dogin8 liked this · 3 years ago
  • galaghiel
    galaghiel reblogged this · 3 years ago
  • galaghiel
    galaghiel liked this · 3 years ago
  • iamhedwig915
    iamhedwig915 liked this · 3 years ago
  • ave-aria
    ave-aria reblogged this · 3 years ago
  • rollerscmods
    rollerscmods liked this · 4 years ago
  • theinfiniteessence
    theinfiniteessence liked this · 5 years ago
  • thefreyacbdcure-blog
    thefreyacbdcure-blog liked this · 5 years ago
  • thedcfangirl
    thedcfangirl reblogged this · 6 years ago
  • 1-1-s1ay-2-2
    1-1-s1ay-2-2 liked this · 6 years ago
  • fionaahutton
    fionaahutton liked this · 6 years ago
  • japanesebreakfastclub
    japanesebreakfastclub reblogged this · 6 years ago
  • japanesebreakfastclub
    japanesebreakfastclub liked this · 6 years ago
  • zzzzzluiszzzzz-blog
    zzzzzluiszzzzz-blog reblogged this · 6 years ago
  • daxael
    daxael liked this · 6 years ago
  • the-grollican
    the-grollican liked this · 6 years ago
  • chwiro
    chwiro liked this · 6 years ago
  • glowinthedarksatan
    glowinthedarksatan liked this · 6 years ago
  • bbq-grillmaster
    bbq-grillmaster reblogged this · 6 years ago
  • bbq-grillmaster
    bbq-grillmaster liked this · 6 years ago
  • maritrinymb28-blog
    maritrinymb28-blog liked this · 6 years ago
  • belas-imagens
    belas-imagens reblogged this · 6 years ago
  • dirtygirltrashtiel-blog
    dirtygirltrashtiel-blog liked this · 6 years ago
  • mariaclaramad-blog
    mariaclaramad-blog liked this · 6 years ago
  • jassycobain
    jassycobain reblogged this · 6 years ago
  • benzalconioo
    benzalconioo liked this · 6 years ago
  • mariaslozak
    mariaslozak liked this · 6 years ago
  • vaqita
    vaqita liked this · 6 years ago
  • overwhelmsion
    overwhelmsion reblogged this · 6 years ago
  • overwhelmsion
    overwhelmsion liked this · 6 years ago
  • weavingthunderstorms
    weavingthunderstorms liked this · 6 years ago
  • rutella
    rutella liked this · 6 years ago
  • deucalio
    deucalio liked this · 6 years ago
  • pitirres
    pitirres reblogged this · 6 years ago
  • friedrich23
    friedrich23 liked this · 6 years ago
  • poquitoquesito
    poquitoquesito liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags