October 5 marks the first meeting of the National Space Council since 1993. But what is it and why does it matter? Let us explain by taking a trip back in history… We’ve teleported back to 1958…President Dwight Eisenhower is in office and the National Aeronautics and Space Council was created with the signing of the Space Act that year. President Eisenhower chaired the first National Aeronautics and Space Council (NASC). That council continued during the Kennedy, Johnson and Nixon Administrations during which we put an American in outer space with John Glenn in 1962 and put humans on the moon starting in 1969. That Council was disbanded in 1973.
In 1989, President George H.W. Bush’s Administration reinstated what was known as the National Space Council, which was designed to help chart national space policy and the roles of multiple federal agencies such as NASA. The Space Council disbanded again in 1993.
On June 30, 2017, President Trump signed an executive order reestablishing the National Space Council – which brings us to today. The current National Space Council will bring a unified national perspective on space policy to the Administration by coordinating the views of the civilian, commercial and national security sectors.
So now that you have a bit of the history…why does this matter?
With the Oct. 5 meeting, titled “Leading the Next Frontier: An Event with the National Space Council,” Vice President Mike Pence will convene this council and have participation from acting NASA Administrator Robert Lightfoot, as well as a number of Trump Administration cabinet members and senior officials, and aerospace industry leaders.
During the council’s first meeting, we will hear from experts who represent various parts of the space industry: Civil Space, Commercial Space and National Security Space.
You can watch the first meeting of the National Space Council starting at 10 a.m. EDT HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
From an astronauts perspective, what is your opinion on movies like Interstellar and Gravity?
October 3 is National Techies Day…and here at NASA we have quite a few people who get REALLY excited about technology. Without techies and the technology they develop, we wouldn’t be able to do the amazing things we do at NASA, or on Earth and in space.
We love our techies! The passionate engineers, researchers and scientists who work on our technology efforts enable us to make a difference in the world around us. They are responsible for developing the pioneering, new technologies and capabilities needed to achieve our current and future missions.
Research and technology development take place within our centers, in academia and industry, and leverage partnerships with other government agencies and international partners. We work to engage and inspire thousands of technologists and innovators creating a community of our best and brightest working on the nation’s toughest challenges.
Our investments in technology development enable and advance space exploration. We are continually seeking to improve our ability to access and travel through space, land more mass in more locations, enable humans to live and explore in space and accelerate the pace of discovery.
When traveling to other planetary bodies, each and every pound of cargo matters. If we can reduce the weight by building tools once we arrive, that’s less weight we need to launch from Earth and carry through space.
Additive manufacturing is a way of printing three-dimensional (3-D) components from a digital model. If you think of a common office printer, it uses a 2-D file to print images and text on a sheet of paper. A 3-D printer uses a 3D file to deposit thin layers of material on top of each other, creating a 3-D product.
Thanks to techies, we’re already using this technology on the International Space Station to print wrenches and other tools. Our Additive Construction for Mobile Emplacement (ACME) project is investigating ways to build structures on planetary surfaces using resources available at a given site.
Discover more about how our techies are working with advanced manufacturing HERE.
Our techies are always innovating and developing new cutting-edge ideas. We test these ideas in extreme environments both here on Earth and in space.
Science missions in space require spacecraft propulsion systems that are high-performance, lightweight, compact and have a short development time. The Deep Space Engine project is looking to meet those needs. Our techies are currently testing a 100lbf (pound-force) thruster to see if this compact, lightweight, low-cost chemical propulsion system can operate at very low temperatures, which allows long duration storage capabilities.
Another technology in development is PUFFER, or the Pop-Up Flat Folding Explorer Robot…and it was inspired by origami! This robot’s lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can’t fit. PUFFER has been tested in a range of rugged terrains to explore areas that might be too risky for a full-fledged rover to go.
With our partners at Ball Aerospace & Technologies Corp., we’ve also collaborated on the Green Propellant Infusion Mission (GPIM), which will flight test a "green" alternative to the toxic propellant, hydrazine, in 2018. GPIM is the nation’s premier spacecraft demonstration of a new high-performance power and propulsion system — a more environmentally friendly fuel. This technology promises improved performance for future satellites and other space missions by providing for longer mission durations, increased payload mass and simplified pre-launch spacecraft processing, including safer handling and transfer of propellants.
Find out more about our technology demonstrations HERE.
What if you could travel from London to New York in less than 3.5 hours? Our techies’ research into supersonic flight could make that a reality!
Currently, supersonic flight creates a disruptive, loud BOOM, but our goal is to instead create a soft “thump” so that flying at supersonic speeds could be permitted over land in the United States.
We’re conducting a series of flight tests to validate tools and models that will be used for the development of future quiet supersonic aircraft.
Did you know that with the ability to observe the location of an aircraft’s sonic booms, pilots can better keep the loud percussive sounds from disturbing communities on the ground? This display allows research pilots the ability to physically see their sonic footprint on a map as the boom occurs.
Learn more about our aircraft technology HERE.
Did you know that some of the technology used in the commercial world was originally developed for NASA? For example, when we were testing parachutes for our Orion spacecraft (which will carry humans into deep space), we needed to capture every millisecond in extreme detail. This would ensure engineers saw and could fix any issues. The problem was,there didn’t exist a camera in the world that could shoot at a high enough frame rate -- and store it in the camera’s memory -- all while adjusting instantly from complete darkness to full daylight and withstanding the space vacuum, space radiation and water immersion after landing.
Oh…and it had to be small, lightweight, and run on low power. Luckily, techies built exactly what we needed. All these improvements have now been incorporated into the camera which is being used in a variety of non-space industries…including car crash tests, where high resolution camera memory help engineers get the most out of testing to make the cars we drive safer.
Learn about more of our spinoff technologies HERE.
We’re always looking for passionate and innovative techies to join the NASA team. From student opportunities to open technology competitions, see below for a list of ways to get involved:
NASA Solve is a gateway for everyone to participate in our mission through challenges, prize competition, citizen science and more! Here are a few opportunities:
Vascular Tissue Challenge
The Vascular Tissue Challenge, a NASA Centennial Challenges competition, offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. More information HERE.
For open job opportunities at NASA, visit: https://nasajobs.nasa.gov.
For open internship opportunities at NASA, visit: https://www.nasa.gov/audience/forstudents/stu-intern-current-opps.html
Stay tuned in to the latest NASA techie news, by following @NASA_Technology on Twitter, NASA Technology on Facebook and visiting nasa.gov/technology.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Here are a few things you should know about our solar system this week:
1. Gearing Up for a Grand Finale
There’s just a year left until the Cassini mission begins its Grand Finale – the final phase of its mission, during which the spacecraft will dive repeatedly between the planet and the rings. To get ready, the Cassini team has launched an enhanced, mobile device-friendly version of the mission website. The site includes information about Cassini, Saturn, the moons and the rings – but it also tells the human stories behind one of the most ambitions expeditions of all time.
2.Caught in Transit
On Monday, May 9, the planet Mercury will cross directly in front of the sun, an event that hasn’t occurred since 2006 and won’t happen again until 2019. Find out how to watch HERE.
3. A Moon for Makemake
Our Hubble Space Telescope has spotted a small, dark moon orbiting Makemake (pronounced “MAH-kay MAH-kay). Make make is the second brightest icy dwarf planet – after Pluto – in the faraway Kuiper Belt.
4. The Age of the Aquarids
The Eta Aquarid meteor shower is the first of two showers that occur each year as a result of Earth passing through dust released by Halley’s Comet. This year, it should peak on the night of May 5/6. Get tips for watching HERE.
5. The Southern Lights of Saturn
On May 4, Cassini will reach periapse, the closest point to Saturn in the spacecraft’s orbit. At about this time, Cassini’s cameras will monitor Saturn’s south polar aurorae, and also image the bright limb of the planet to better understand its upper haze layers.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Pew! Pew! Pew!
Imagine slow-motion fireworks that started exploding 170 years ago and are still continuing. This type of firework is not launched into Earth's atmosphere, but rather into space by a doomed super-massive star, called Eta Carinae.
Enjoy the the latest view from our Hubble Space Telescope.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On April 7, Jupiter--the king of planets--reaches opposition, when it shines brightest and appears largest.
Jupiter will be almost directly overhead at midnight.
This is also a great time to observe the planet’s Galilean moons--Io, Ganymeade, Europa and Callisto. They can be easily seen through binoculars.
With binoculars, you can even see the Great Red Spot as the storm transits the planet every ten hours.
Looking east on April 22, look to the skies for the Summer Triangle, consisting of Deneb, in Cygnus, the Swan; Altair in Aquila, the Eagle; and Vega, in Lyre(the Harp).
Get ready for the Lyrids, the year’s second major meteor shower, as it pierces the Summer Triangle in the early morning hours of April 22. Since the shower begins close to the new moon, expect excellent almost moonless viewing conditions.
You can catch up on solar system and all of our missions at www.nasa.gov
Watch the full “What’s Up for April 2017″ video:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hey! I was wondering how everyone on the ISS adjusts to each other’s culture and language. It seems like it might be hard with language barriers and other factors, to live in a confined space with people from another country. Do others try to teach you their language? Does everyone mostly speak English, or do some people speak Russian?
Did the training ever get so hard that you would regret getting into this?
No because the end goal is space!
This all-sky mosaic was constructed from 912 Transiting Exoplanet Survey Satellite (TESS) images. Prominent features include the Milky Way, a glowing arc that represents the bright central plane of our galaxy, and the Large and Small Magellanic Clouds – satellite galaxies of our own located, respectively, 160,000 and 200,000 light-years away. In the northern sky, look for the small, oblong shape of the Andromeda galaxy (M 31), the closest big spiral galaxy, located 2.5 million light-years away. The black regions are areas of sky that TESS didn’t image. Credit: NASA/MIT/TESS and Ethan Kruse (University of Maryland College Park)
On April 18, 2018, we launched the Transiting Exoplanet Survey Satellite, better known as TESS. It was designed to search for planets beyond our solar system – exoplanets – and to discover worlds for our James Webb Space Telescope, which launched three years later, to further explore. TESS images sections of sky, one hemisphere at a time. When we put all the images together, we get a great look at Earth’s sky!
In its five years in space, TESS has discovered 326 planets and more than 4,300 planet candidates. Along the way, the spacecraft has observed a plethora of other objects in space, including watching as a black hole devoured a star and seeing six stars dancing in space. Here are some notable results from TESS so far:
During its first five years in space, our Transiting Exoplanet Survey Satellite has discovered exoplanets and identified worlds that can be further explored by the James Webb Space Telescope. Credit: NASA/JPL-Caltech
1. TESS’ first discovery was a world called Pi Mensae c. It orbits the star Pi Mensae, about 60 light-years away from Earth and visible to the unaided eye in the Southern Hemisphere. This discovery kicked off NASA's new era of planet hunting.
2. Studying planets often helps us learn about stars too! Data from TESS & Spitzer helped scientists detect a planet around the young, flaring star AU Mic, providing a unique way to study how planets form, evolve, and interact with active stars.
Located less than 32 light-years from Earth, AU Microscopii is among the youngest planetary systems ever observed by astronomers, and its star throws vicious temper tantrums. This devilish young system holds planet AU Mic b captive inside a looming disk of ghostly dust and ceaselessly torments it with deadly blasts of X-rays and other radiation, thwarting any chance of life… as we know it! Beware! There is no escaping the stellar fury of this system. The monstrous flares of AU Mic will have you begging for eternal darkness. Credit: NASA/JPL-Caltech
3. In addition to finding exoplanets on its own, TESS serves as a pathfinder for the James Webb Space Telescope. TESS discovered the rocky world LHS 3844 b, but Webb will tell us more about its composition. Our telescopes, much like our scientists, work together.
4. Though TESS may be a planet-hunter, it also helps us study black holes! In 2019, TESS saw a ‘‘tidal disruption event,’’ otherwise known as a black hole shredding a star.
When a star strays too close to a black hole, intense tides break it apart into a stream of gas. The tail of the stream escapes the system, while the rest of it swings back around, surrounding the black hole with a disk of debris. Credit: NASA's Goddard Space Flight Center
5. In 2020, TESS discovered its first Earth-size world in the habitable zone of its star – the distance from a star at which liquid water could exist on a planet’s surface. Earlier this year, a second rocky planet was discovered in the system.
You can see the exoplanets that orbit the star TOI 700 moving within two marked habitable zones, a conservative habitable zone, and an optimistic habitable zone. Planet d orbits within the conservative habitable zone, while planet e moves within an optimistic habitable zone, the range of distances from a star where liquid surface water could be present at some point in a planet’s history. Credit: NASA Goddard Space Flight Center
6. Astronomers used TESS to find a six-star system where all stars undergo eclipses. Three binary pairs orbit each other, and, in turn, the pairs are engaged in an elaborate gravitational dance in a cosmic ballroom 1,900 light-years away in the constellation Eridanus.
7. Thanks to TESS, we learned that Delta Scuti stars pulse to the beat of their own drummer. Most seem to oscillate randomly, but we now know HD 31901 taps out a beat that merges 55 pulsation patterns.
Sound waves bouncing around inside a star cause it to expand and contract, which results in detectable brightness changes. This animation depicts one type of Delta Scuti pulsation — called a radial mode — that is driven by waves (blue arrows) traveling between the star's core and surface. In reality, a star may pulsate in many different modes, creating complicated patterns that enable scientists to learn about its interior. Credit: NASA’s Goddard Space Flight Center
8. Last is a galaxy that flares like clockwork! With TESS and Swift, astronomers identified the most predictably and frequently flaring active galaxy yet. ASASSN-14ko, which is 570 million light-years away, brightens every 114 days!
Make sure to follow us on Tumblr for your regular dose of space!
Today we celebrate International Women’s Day, a day in which we honor and recognize the contributions of women…both on Earth and in space.
Since the beginning, women have been essential to the progression and success of America’s space program.
Throughout history, women have had to overcome struggles in the workplace. The victories for gender rights were not achieved easily or quickly, and our work is not done.
Today, we strive to make sure that our legacy of inclusion and excellence lives on.
We have a long-standing cultural commitment to excellence that is largely driven by data, including data about our people. And our data shows progress is driven by questioning our assumptions and cultural prejudices – by embracing and nurturing all talent we have available, regardless of gender, race or other protected status, to build a workforce as diverse as our mission. This is how we, as a nation, will take the next giant leap in exploration.
As a world leader in science, aeronautics, space exploration and technology, we have a diverse mission that demands talent from every corner of America, and every walk of life.
Learn more about the inspiring woman at NASA here: https://women.nasa.gov/
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts