The Past, Present And Future Of Exploration On Mars

The Past, Present and Future of Exploration on Mars

Today, we’re celebrating the Red Planet! Since our first close-up picture of Mars in 1965, spacecraft voyages to the Red Planet have revealed a world strangely familiar, yet different enough to challenge our perceptions of what makes a planet work.

image

You’d think Mars would be easier to understand. Like Earth, Mars has polar ice caps and clouds in its atmosphere, seasonal weather patterns, volcanoes, canyons and other recognizable features. However, conditions on Mars vary wildly from what we know on our own planet.

Join us as we highlight some of the exploration on Mars from the past, present and future:

PAST

Viking Landers

image

Our Viking Project found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet’s surface.

image

Besides taking photographs and collecting other science data, the two landers conducted three biology experiments designed to look for possible signs of life.

Pathfinder Rover

image

In 1997, Pathfinder was the first-ever robotic rover to land on the surface of Mars. It was designed as a technology demonstration of a new way to deliver an instrumented lander to the surface of a planet. Mars Pathfinder used an innovative method of directly entering the Martian atmosphere, assisted by a parachute to slow its descent and a giant system of airbags to cushion the impact.

image

Pathfinder not only accomplished its goal but also returned an unprecedented amount of data and outlived its primary design life.

PRESENT

Spirit and Opportunity

image

In January 2004, two robotic geologists named Spirit and Opportunity landed on opposite sides of the Red Planet. With far greater mobility than the 1997 Mars Pathfinder rover, these robotic explorers have trekked for miles across the Martian surface, conducting field geology and making atmospheric observations. Carrying identical, sophisticated sets of science instruments, both rovers have found evidence of ancient Martian environments where intermittently wet and habitable conditions existed.

image

Both missions exceeded their planned 90-day mission lifetimes by many years. Spirit lasted 20 times longer than its original design until its final communication to Earth on March 22, 2010. Opportunity continues to operate more than a decade after launch.

Mars Reconnaissance Orbiter

image

Our Mars Reconnaissance Orbiter left Earth in 2005 on a search for evidence that water persisted on the surface of Mars for a long period of time. While other Mars missions have shown that water flowed across the surface in Mars’ history, it remained a mystery whether water was ever around long enough to provide a habitat for life.

image

In addition to using the rover to study Mars, we’re using data and imagery from this mission to survey possible future human landing sites on the Red Planet.

Curiosity

image

The Curiosity rover is the largest and most capable rover ever sent to Mars. It launched November 26, 2011 and landed on Mars on Aug. 5, 2012. Curiosity set out to answer the question: Did Mars ever have the right environmental conditions to support small life forms called microbes? 

image

Early in its mission, Curiosity’s scientific tools found chemical and mineral evidence of past habitable environments on Mars. It continues to explore the rock record from a time when Mars could have been home to microbial life.

FUTURE

Space Launch System Rocket

image

We’re currently building the world’s most powerful rocket, the Space Launch System (SLS). When completed, this rocket will enable astronauts to begin their journey to explore destinations far into the solar system, including Mars.

Orion Spacecraft

image

The Orion spacecraft will sit atop the Space Launch System rocket as it launches humans deeper into space than ever before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities.

Mars 2020

image

The Mars 2020 rover mission takes the next step in exploration of the Red Planet by not only seeking signs of habitable conditions in the ancient past, but also searching for signs of past microbial life itself.

image

The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a “cache” on the surface of Mars. The mission will also test a method for producing oxygen from the Martian atmosphere, identify other resources (such as subsurface water), improve landing techniques and characterize weather, dust and other potential environmental conditions that could affect future astronauts living and working on the Red Planet.

image

For decades, we’ve sent orbiters, landers and rovers, dramatically increasing our knowledge about the Red Planet and paving the way for future human explorers. Mars is the next tangible frontier for human exploration, and it’s an achievable goal. There are challenges to pioneering Mars, but we know they are solvable. 

To discover more about Mars exploration, visit: https://www.nasa.gov/topics/journeytomars/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

3 years ago

Questions coming up from….

@teamadamsperret: Congrats on your PhD!! When people ask what you do, what's your reply?

@Anonymous: How does it feel, working in NASA?

@moonlighy: How did you find your love for this job?

@redbullanddepression: what the prettiest star in the sky in your opinion? also, you are a great role model as a queer woman who is attending university next year to major in aerospace engineering!!!


Tags
6 years ago

Parker Solar Probe is Go for Launch

Tomorrow, Aug. 11, we're launching a spacecraft to touch the Sun.

image

The first chance to launch Parker Solar Probe is 3:33 a.m. EDT on Aug. 11 from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Launch coverage on NASA TV starts at 3 a.m. EDT at nasa.gov/live.

After launch, Parker Solar Probe begins its daring journey to the Sun’s atmosphere, or corona, going closer to the Sun than any spacecraft in history and facing brutal heat and radiation.

Though Parker Solar Probe weighs a mere 1,400 pounds — pretty light for a spacecraft — it's launching aboard one of the world's most powerful rockets, a United Launch Alliance Delta IV Heavy with a third stage added.

image

Even though you might think the Sun's massive means things would just fall into it, it's surprisingly difficult to actually go there. Any object leaving Earth starts off traveling at about 67,000 miles per hour, same as Earth — and most of that is in a sideways direction, so you have to shed most of that sideways speed to make it to the Sun. All that means that it takes 55 times more launch energy to go to the Sun than it does to go to Mars. On top of its powerful launch vehicle, Parker Solar Probe will use seven Venus gravity assists to shed sideways speed.

Even though Parker Solar Probe will lose a lot of sideways speed, it'll still be going incredibly fast as its orbit draws closer to the Sun throughout its seven-year mission. At its fastest, Parker Solar Probe will travel at 430,000 miles per hour — fast enough to get from Philadelphia to Washington, D.C. in one second — setting the record for the fastest spacecraft in history.

image

But the real challenge was to keep the spacecraft from frying once it got there.

We’ve always wanted to send a mission to the corona, but we literally haven’t had the technology that can protect a spacecraft and its instruments from its scorching heat. Only recent advances have enabled engineers to build a heat shield that will protect the spacecraft on this journey of extremes — a tricky feat that requires withstanding the Sun’s intense radiation on the front and staying cool at the back, so the spacecraft and instruments can work properly.

image

The 4.5-inches-thick heat shield is built like a sandwich. There’s a thin layer of carbon material like you might find in your golf clubs or tennis rackets, carbon foam, and then another thin piece of carbon-carbon on the back. Even while the Sun-facing side broils at 2,500 degrees Fahrenheit, the back of the shield will remain a balmy 85 degrees — just above room temperature. There are so few particles in this region that it's a vacuum, so blocking the Sun's radiation goes a long way towards keeping the spacecraft cool.

Parker Solar Probe is also our first mission to be named after a living individual: Dr. Eugene Parker, famed solar physicist who in 1958 first predicted the existence of the solar wind.

image

"Solar wind" is what Dr. Parker dubbed the stream of charged particles that flows constantly from the Sun, bathing Earth and our entire solar system in the Sun’s magnetic fields. Parker Solar Probe’s flight right through the corona allows it to observe the birth of the very solar wind that Dr. Parker predicted, right as it speeds up and over the speed of sound.  

image

The corona is where solar material is heated to millions of degrees and where the most extreme eruptions on the Sun occur, like solar flares and coronal mass ejections, which fling particles out to space at incredible speeds near the speed of light. These explosions can also spark space weather storms near Earth that can endanger satellites and astronauts, disrupt radio communications and, at their most severe, trigger power outages.

image

Thanks to Parker Solar Probe’s landmark mission, solar scientists will be able to see the objects of their study up close and personal for the very first time.

Up until now, all of our studies of the corona have been remote — that is, taken from a distance, rather than at the mysterious region itself. Scientists have been very creative to glean as much as possible from their remote data, but there’s nothing like actually sending a probe to the corona to see what’s going on.

image

And scientists aren’t the only ones along for the adventure — Parker Solar Probe holds a microchip carrying the names of more than 1.1 million people who signed up to send their name to the Sun. This summer, these names and 1,400 pounds of science equipment begin their journey to the center of our solar system.

Three months later in November 2018, Parker Solar Probe makes its first close approach to the Sun, and in December, it will send back the data. The corona is one of the last places in the solar system where no spacecraft has visited before; each observation Parker Solar Probe makes is a potential discovery.

Stay tuned — Parker Solar Probe is about to take flight.

Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
7 years ago

Happy National Techies Day!

October 3 is National Techies Day…and here at NASA we have quite a few people who get REALLY excited about technology. Without techies and the technology they develop, we wouldn’t be able to do the amazing things we do at NASA, or on Earth and in space.

Our Techies

image

We love our techies! The passionate engineers, researchers and scientists who work on our technology efforts enable us to make a difference in the world around us. They are responsible for developing the pioneering, new technologies and capabilities needed to achieve our current and future missions.

Research and technology development take place within our centers, in academia and industry, and leverage partnerships with other government agencies and international partners. We work to engage and inspire thousands of technologists and innovators creating a community of our best and brightest working on the nation’s toughest challenges.

Technology Drives Exploration

image

Our investments in technology development enable and advance space exploration. We are continually seeking to improve our ability to access and travel through space, land more mass in more locations, enable humans to live and explore in space and accelerate the pace of discovery.

Techie Technology

Advanced Manufacturing Technologies

When traveling to other planetary bodies, each and every pound of cargo matters. If we can reduce the weight by building tools once we arrive, that’s less weight we need to launch from Earth and carry through space.

image

Additive manufacturing is a way of printing three-dimensional (3-D) components from a digital model. If you think of a common office printer, it uses a 2-D file to print images and text on a sheet of paper. A 3-D printer uses a 3D file to deposit thin layers of material on top of each other, creating a 3-D product.

image

Thanks to techies, we’re already using this technology on the International Space Station to print wrenches and other tools. Our Additive Construction for Mobile Emplacement (ACME) project is investigating ways to build structures on planetary surfaces using resources available at a given site.

image

Discover more about how our techies are working with advanced manufacturing HERE.

Technology Demonstrations

Our techies are always innovating and developing new cutting-edge ideas. We test these ideas in extreme environments both here on Earth and in space.  

Science missions in space require spacecraft propulsion systems that are high-performance, lightweight, compact and have a short development time. The Deep Space Engine project is looking to meet those needs. Our techies are currently testing a 100lbf (pound-force) thruster to see if this compact, lightweight, low-cost chemical propulsion system can operate at very low temperatures, which allows long duration storage capabilities.

Another technology in development is PUFFER, or the Pop-Up Flat Folding Explorer Robot…and it was inspired by origami! This robot’s lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can’t fit. PUFFER has been tested in a range of rugged terrains to explore areas that might be too risky for a full-fledged rover to go.

image

With our partners at Ball Aerospace & Technologies Corp., we’ve also collaborated on the Green Propellant Infusion Mission (GPIM), which will flight test a "green" alternative to the toxic propellant, hydrazine, in 2018. GPIM is the nation’s premier spacecraft demonstration of a new high-performance power and propulsion system — a more environmentally friendly fuel. This technology promises improved performance for future satellites and other space missions by providing for longer mission durations, increased payload mass and simplified pre-launch spacecraft processing, including safer handling and transfer of propellants.  

Find out more about our technology demonstrations HERE.

Aircraft Technology

What if you could travel from London to New York in less than 3.5 hours? Our techies’ research into supersonic flight could make that a reality! 

image

Currently, supersonic flight creates a disruptive, loud BOOM, but our goal is to instead create a soft “thump” so that flying at supersonic speeds could be permitted over land in the United States.

We’re conducting a series of flight tests to validate tools and models that will be used for the development of future quiet supersonic aircraft.

image

Did you know that with the ability to observe the location of an aircraft’s sonic booms, pilots can better keep the loud percussive sounds from disturbing communities on the ground? This display allows research pilots the ability to physically see their sonic footprint on a map as the boom occurs.

Learn more about our aircraft technology HERE.

Technology Spinoffs 

Did you know that some of the technology used in the commercial world was originally developed for NASA? For example, when we were testing parachutes for our Orion spacecraft (which will carry humans into deep space), we needed to capture every millisecond in extreme detail. This would ensure engineers saw and could fix any issues. The problem was,there didn’t exist a camera in the world that could shoot at a high enough frame rate -- and store it in the camera’s memory -- all while adjusting instantly from complete darkness to full daylight and withstanding the space vacuum, space radiation and water immersion after landing.

Oh…and it had to be small, lightweight, and run on low power. Luckily, techies built exactly what we needed. All these improvements have now been incorporated into the camera which is being used in a variety of non-space industries…including car crash tests, where high resolution camera memory help engineers get the most out of testing to make the cars we drive safer.

Learn about more of our spinoff technologies HERE.

Join Our Techie Team

We’re always looking for passionate and innovative techies to join the NASA team. From student opportunities to open technology competitions, see below for a list of ways to get involved:

NASA Solve is a gateway for everyone to participate in our mission through challenges, prize competition, citizen science and more! Here are a few opportunities:

Vascular Tissue Challenge 

The Vascular Tissue Challenge, a NASA Centennial Challenges competition, offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. More information HERE.

For open job opportunities at NASA, visit: https://nasajobs.nasa.gov. 

For open internship opportunities at NASA, visit: https://www.nasa.gov/audience/forstudents/stu-intern-current-opps.html

Stay tuned in to the latest NASA techie news, by following  @NASA_Technology on Twitter, NASA Technology on Facebook and visiting nasa.gov/technology.

Happy National Techies Day!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

When will we start seeing images from the James Webb telescope??


Tags
6 years ago

For the second time in history, a human-made object has reached the space between the stars. Our Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.

Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.

Read more at https://go.nasa.gov/2QG2s16 or follow along with the mission @NASAVoyager on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

What Astronauts in Space Eat in a Day

There was a time when even NASA didn’t know if humans could eat in the microgravity environment of space. Thankfully for the future of long-term crewed missions, John Glenn proved that it was indeed possible when he ate applesauce from an aluminum tube while orbiting the Earth in 1962.

image

Since then, the research conducted at our Space Food Systems Laboratory at Johnson Space Center has resulted in improved taste, variety and packaging of foods intended for space travel. Current-day astronauts are now given a standard menu of over 200 approved food and drink items months before launch, allowing them to plan their daily meals far in advance.

image

So, with such a variety of foods to choose from, what does the typical astronaut eat in a day?  Here is an example from the International Space Station standard menu:

image

Sounds tasty, right?

image

However, these are only suggestions for astronauts, so they still have some choice over what they ultimately eat. Many astronauts, including Tim Kopra, combine different ingredients for meals.

image

Others plan to eat special foods for the holidays. Astronauts Scott Kelly and Kjell Lindgren did just that on Thanksgiving last year when they ate smoked turkey, candied yams, corn and potatoes au gratin.

image

Another key factor that influences what astronauts eat is the availability of fresh fruits and vegetables, which are delivered via resupply spacecrafts.  When these foods arrive to the space station, they must be eaten quickly before they spoil. Astronaut Tim Peake doesn’t seem to mind.

image

Nutrition is important to help counteract some of the effects spaceflight have on the body, such as bone and muscle loss, cardiovascular degradation, impairment of immune function, neurovestibular changes and vision changes. 

“Nutrition is vital to the mission,” Scott M. Smith, Ph.D., manager for NASA’s Nutritional Biochemistry Lab said. “Without proper nutrition for the astronauts, the mission will fail. It’s that simple.”

image

We work hard to help astronauts feel less homesick by providing them with food that not only reminds them of life back on Earth, but is also nutritious and healthy. 

image

Here are some unusual space food inventions that are no longer in use:

image

Gelatin-coated sandwich and cookie cubes

Compressed bacon squares

Freeze dried ice cream

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Exploration in Extreme Environments: Under Water and in Outer Space

Living in the depths of the sea…to prepare for travel in deep space. 

Sounds strange, but that’s what our NEEMO expedition aims to do.

image

This 10-day NASA Extreme Environment Mission Operations (NEEMO) 22 expedition is slated to begin on June 18. NEEMO 22 will focus on both exploration spacewalks (or in this case waterwalks?) and objectives related to the International Space Station and deep space missions.

Analog (noun): is a situation on Earth that produces effects on the body similar to those experienced in space, both physical and mental/emotional. These studies help us prepare for long duration missions.

image

As an analog for future planetary science concepts and strategies, marine science also will be performed under the guidance of Florida International University’s marine science department.

image

NASA astronaut Kjell Lindgren will command the NEEMO 22 mission aboard the Aquarius laboratory, 62 feet below the ocean surface near Key Largo Florida. Lindgren was part of the space station Expeditions 44 and 45 in 2015, where he spent 141 days living and working in the extreme environment of space. He also conducted two spacewalks.

Fun Fact: These underwater explorers are referred to as “aquanauts”

image

Lindgren will be joined by ESA (European Space Agency) astronaut Pedro Duque, Trevor Graff, a Jacobs Engineering employee working as a planetary scientist at our Johnson Space Center; and research scientists Dom D’Agostino from the University of South Florida and the Florida Institute of Human and Machine Cognition.

While living underwater for 10 days, the crew will:

Test spaceflight countermeasure equipment

Validate technology for precisely tracking equipment in a habitat

Complete studies of body composition and sleep

Assess hardware sponsored by ESA that will help crew members evacuate someone who has been injured on a lunar spacewalk

image

Why do we use Analog Missions?

Analog missions prepare us for near-future exploration to asteroids, Mars and the moon. Analogs play a significant role in problem solving for spaceflight research.

Not all experiments can be done in space – there is not enough time, money, equipment and manpower

Countermeasures can be tested in analogs before trying them in space. Those that do not work in analogs will not be flown in space

Ground-based analog studies are completed more quickly and less expensively

For more information about the NEEMO mission, visit: https://www.nasa.gov/mission_pages/NEEMO/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

History Made: Apollo 11 Splashes Down Today in 1969

image

The Apollo 11 Command Module “Columbia” is hoisted onto its recovery ship the USS Hornet, following splashdown on July 24, 1969. Credit: NASA

Four days after their historic achievement, Apollo 11 astronauts Neil Armstrong, Buzz Aldrin and Michael Collins splashed down in the Pacific Ocean at 12:49 p.m. EDT, about 900 miles from Hawaii. The crew was recovered by the crew of the USS Hornet where President Richard Nixon was waiting to greet them. 

Watch a replay of the original live broadcast of the recovery on NASA TV starting at 12:45 p.m. EDT. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Dr. Beach’s Top 10 Beaches of 2021

For more than 30 years, Dr. Beach, aka Dr. Stephen Leatherman, has created an annual Top 10 Beach list. A professor and coastal geomorphologist at Florida International University, Dr. Beach factors in 50 different criteria including water color, sand softness, wave size, water temperature and more.

As we get ready to launch Landsat 9 this fall, we’re taking a tour of Dr. Beach’s Top 10 US beaches of 2021 as seen by Landsat 8.

10. Coast Guard Beach, Cape Cod, Massachusetts

Dr. Beach’s Top 10 Beaches Of 2021

Coast Guard Beach is located just north of the remote Nauset Inlet on Outer Cape Cod, Massachusetts. Except for the picturesque old white Coast Guard station that still sits atop the glacial bluffs, there is no development here; the best way to reach this beach is by bicycle from the Salt Pond Visitor’s Center or shuttle bus.

First mapped by Champlain in 1605, the shifting sands of this inlet are clearly visible in the Landsat image. This location is also at the point where the glacial sea cliffs transcend into a barrier beach (e.g., sand spit) that provides protection for the lagoon and development of lush salt marshes.

“In my early days as a Professor at Boston University and later at the University of Massachusetts at Amherst, I spent many summer and some winter-time days conducting scientific studies along this barrier beach.” – Dr. Beach

Landsat 8 collected this image of Coast Guard Beach on May 1, 2021.

9. Beachwalker Park, Kiawah Island, South Carolina

Dr. Beach’s Top 10 Beaches Of 2021

Beachwalker Park is a public beach located on the southern part of Kiawah Island, South Carolina. This barrier island in the Charleston area is 10-miles long and features a fine grained, hard-packed beach that can be traversed easily by bicycle.

This Landsat image shows a huge accumulation of sand as a series of shoals on the south end of the island, which can be reached from Beachwalker Park. These sandy shoals will eventually coalesce, becoming an extension of the sand spit that is the south end of Kiawah Island.

“In the early 2000s, I served as the beach consultant to the Town of Kiawah Island because their world-famous golf course on the north end was being threatened by severe erosion. It was necessary to artificially bypass some sand on the north end of the island so that the normal flow of sand along the island was reinstated, saving the outermost link of this PGA golf course.” – Dr. Beach

Landsat 8 collected this image of Beachwalker Park on April 9, 2021.

8. Coronado Beach, San Diego, California

Dr. Beach’s Top 10 Beaches Of 2021

Coronado Beach in San Diego is the toast of Southern California with some of the warmest and safest water on the Pacific coast. This 100-meter-wide beach is an oasis of subtropical vegetation, unique Mediterranean climate, and fine sparkling sand.

The harbor serves as a major port for the Navy’s Pacific fleet, the home port for several aircraft carriers. The docks and the crossing airplane runways for the Naval base are visible in this Landsat image.

“I really enjoy visiting this beautiful beach as well as having lunch and drinks, taking advantage of the hotel’s beachside service.” – Dr. Beach

Landsat 8 collected this image of Coronado Beach on April 23, 2020.

7. Caladesi Island State Park, Dunedin Clearwater, Florida

Dr. Beach’s Top 10 Beaches Of 2021

Caladesi Island State Park is located in the small town of Dunedin on the Southwest Florida coast. The stark white undeveloped beach is composed of crystalline quartz sand which is soft and cushy at the water’s edge, inviting one to take a dip in the sparkling clear waters.

While island is still in the Park’s name, Caladesi is no longer a true island as shown on the Landsat image--it is now connected to Clearwater Beach.

“Caladesi is located in the Tampa area, but it seems like a world away on this getaway island.” – Dr. Beach

Landsat 8 collected this image of Caladesi Island State Park on April 9, 2021.

6. Duke Kahanamoku Beach, Oahu, Hawaii

Dr. Beach’s Top 10 Beaches Of 2021

Duke Kahanamoku Beach is named for the famous native Hawaiian who was a big-board surfer and introduced surfing as a sport to mainland Americans and indeed the world.

One of the prominent features on this Landsat image is Diamondhead with its circular shape near the coast. This large cone of an extinct volcano provides the iconic backdrop for photos of Waikiki Beach.

“This is my favorite spot at the world-famous Waikiki Beach where you can both play in the surf and swim in the calm lagoonal waters.” – Dr. Beach

Landsat 8 collected this image of Duke Kahanamoku Beach on May 17, 2020.

5. Lighthouse Beach, Buxton, Outer Banks of North Carolina

Dr. Beach’s Top 10 Beaches Of 2021

Lighthouse Beach in the village of Buxton is located at Cape Hatteras, the most northern cape in the Outer Banks of North Carolina. This lifeguarded beach is the number one surfing spot on the US Atlantic Coast as the large offshore sand banks, known as Diamond Shoals, cause wave refraction focusing wave energy on this beach.

The Landsat image shows the seaward growth of south flank of Cape Hatteras as evidenced by the parallel lines of beach ridges.

“It is fun to walk down the narrow sand spit, more exposed at low tide, as waves are approaching from both directions because of the bending of the waves.” – Dr. Beach

Landsat 8 collected this image of Lighthouse Beach on May 3, 2020.

4. St. George Island State Park, Florida Panhandle

Dr. Beach’s Top 10 Beaches Of 2021

St. George Island State Park, located on the Florida panhandle and far from urban areas, is a favorite destination for beachgoers, anglers and bird watchers as nature abounds. Like other beaches on the panhandle, this long barrier island has a sugary fine, white sand beach.

In this Landsat image, St. George can be seen north of the bridge that links this barrier island to the mainland. The enclosed bay behind St. George Island is fairly shallow and the water much less clear as shown on the Landsat image, but it is not polluted.

“Besides swimming in the crystal-clear Gulf of Mexico waters, I enjoy beachcombing and shelling. While this island was hit hard in 2018 by Hurricane Michael, it has substantially recovered as there was little development to be impacted.” – Dr. Beach

Landsat 8 collected this image of St. George Island State Park on October 13, 2020.

3. Ocracoke Lifeguard Beach, Outer Banks of North Carolina

Dr. Beach’s Top 10 Beaches Of 2021

Ocracoke Lifeguarded Beach at the southern end of Cape Hatteras National Seashore was the first seashore to be incorporated into the National Park Service system.

The Landsat image shows Ocracoke to the north as separated by an inlet from Portsmouth Island. The village of Ocracoke was built at the wide area of the island where it was protected from oceanic waves during coastal storms which include both winter nor’easters and hurricanes.

“Ocracoke was once the home of the most infamous pirate Blackbeard and is still a very special place—my favorite getaway beach.” – Dr. Beach

Landsat 8 collected this image of Ocracoke Lifeguard Beach on May 3, 2020.

2. Cooper’s Beach, Southampton, New York

Dr. Beach’s Top 10 Beaches Of 2021

Cooper’s Beach in the tony town of Southampton on the south shore of Long Island, New York is shielded from the cold Labrador current, making for a fairly long summer swimming season. The white quartz sand is medium to coarse grained with some pebbles, making the beach slope fairly steeply into the water.

This Landsat image shows the fairly large coastal pond named Mecox Bay to the east with Shinnecock Inlet and Bay also displayed to the west. Coopers Beach is hundreds of yards wide, made of grainy white quartz sand and is backed by large sand dunes covered by American beach grass.

“I spent several decades conducting scientific studies of this very interest oceanic shoreline because it is so dynamic and the beachfront real estate so expensive. Some of the most gorgeous and expensive residential houses in the United States are located in the world-famous Hamptons.” – Dr. Beach

Landsat 8 collected this image of Coopers Beach on August 30, 2019.

1. Hapuna Beach State Park, Big Island Hawaii

Dr. Beach’s Top 10 Beaches Of 2021

Hapuna Beach State Park is a white coral sand beach that resides in a landscape dominated by dark brown lava flows on the Big Island of Hawaii. The crystal-clear water is perfect for swimming, snorkeling, and scuba diving during the summer months in contrast to winter big-wave days when pounding shorebreaks and rip currents make swimming impossible.

Hapuna and the other pocket beaches appear as an oasis in this otherwise fairly bleak landscape except for the areas irrigated as prominently shown on the Landsat imagery by the green vegetation.

“This volcanically active island is the only place that I know where you can snow ski at the high mountain tops and water ski in the warm ocean water on the same day.” – Dr. Beach

Landsat 8 collected this image of Hapuna State Park on January 5, 2021.

What’s your favorite beach?

View Dr. Beach’s 2021 picks and see Landsat views of these beaches over time.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

13 Reasons to Have an Out of This World Friday (the 13th)

1. Know that not all of humanity is bound to the ground

image

Since 2000, the International Space Station has been continuously occupied by humans. There, crew members live and work while conducting important research that benefits life on Earth and will even help us eventually travel to deep space destinations, like Mars.

2. Smart people are up all night working in control rooms all over NASA to ensure that data keeps flowing from our satellites and spacecraft

image

Our satellites and spacecraft help scientists study Earth and space. Missions looking toward Earth provide information about clouds, oceans, land and ice. They also measure gases in the atmosphere, such as ozone and carbon dioxide, and the amount of energy that Earth absorbs and emits. And satellites monitor wildfires, volcanoes and their smoke.

image

Satellites and spacecraft that face toward space have a variety of jobs. Some watch for dangerous rays coming from the sun. Others explore asteroids and comets, the history of stars, and the origin of planets. Some fly near or orbit other planets. These spacecraft may look for evidence of water on Mars or capture close-up pictures of Saturn’s rings.

3. The spacecraft, rockets and systems developed to send astronauts to low-Earth orbit as part of our Commercial Crew Program is also helping us get to Mars

Changes to the human body during long-duration spaceflight are significant challenges to solve ahead of a mission to Mars and back. The space station allows us to perform long duration missions without leaving Earth’s orbit. 

image

Although they are orbiting Earth, space station astronauts spend months at a time in near-zero gravity, which allows scientists to study several physiological changes and test potential solutions. The more time they spend in space, the more helpful the station crew members can be to those on Earth assembling the plans to go to Mars.

4. Two new science missions will travel where no spacecraft has gone before…a Jupiter Trojan asteroid and a giant metal asteroid!

image

We’ve selected two missions that have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun!

image

The first mission, Lucy, will visit six of Jupiter’s mysterious Trojan asteroids. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter’s current orbit.

image

The second mission, Psyche, will study a unique metal asteroid that’s never been visited before. This giant metal asteroid, known as 16 Psyche, is about three times farther away from the sun than is the Earth. Scientists wonder whether Psyche could be an exposed core of an early planet that could have been as large as Mars, but which lost its rocky outer layers due to a number of violent collisions billions of years ago.

5. Even astronauts eat their VEGGIES’s

NASA astronaut Shane Kimbrough collected the third and final harvest of the latest round of the Veggie investigation, testing the capability to grow fresh vegetables on the International Space Station. 

image

Understanding how plants respond to microgravity is an important step for future long-duration space missions, which will require crew members to grow their own food. Crew members have previously grown lettuce and flowers in the Veggie facility. This new series of the study expands on previous validation tests.

6. When you feel far away from home, you can think of the New Horizons spacecraft as it heads toward the Kuiper Belt, and the twin Voyager spacecraft are beyond the influence of our sun…billions of miles away 

image

Our New Horizons spacecraft completed its Pluto flyby in July 2015 and has continued on its way toward the Kuiper Belt. The spacecraft continues to send back important data as it travels toward deeper space at more than 32,000 miles per hour, and is nearly 3.2 billion miles from Earth.

image

In addition to New Horizons, our twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-37-year journey since their 1977 launches, they are each much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between the stars, filled with material ejected by the death of nearby stars millions of years ago.

7. Earth has a magnetic field that largely protects it from the solar wind stripping away out atmosphere…unlike Mars

image

Findings from our MAVEN mission have identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment to the cold, arid planet Mars is today. MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. Luckily, Earth has a magnetic field that largely protects it from this process. 

8. There are humans brave enough to not only travel in space, but venture outside the space station to perform important repairs and updates during spacewalks

image

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. These activities can also be referred to as EVAs – Extravehicular Activities. Not only do spacewalks require an enormous amount of work to prepare for, but they are physically demanding on the astronauts. They are working in the vacuum of space in only their spacewalking suit. 

image

When on a spacewalk, astronauts use safety tethers to stay close to their spacecraft. One end of the tether is hooked to the spacewalker, while the other end is connected to the vehicle. Spacewalks typically last around 6.5 hours, but can be extended to 7 or 8 hours, if necessary.

9. We’re working to create new aircraft that will dramatically reduce fuel use, emissions and noise…meaning we could change the way you fly! 

image

The nation’s airlines could realize more than $250 billion dollars in savings in the near future thanks to green-related technologies that we are developing and refining. These new technologies could cut airline fuel use in half, pollution by 75% and noise to nearly one-eighth of today’s levels!

10. You can see a global image of your home planet…EVERY DAY

image

Once a day, we will post at least a dozen new color images of Earth acquired from 12 to 36 hours earlier. These images are taken by our EPIC camera from one million miles away on the Deep Space Climate Observatory (DSCOVR). Take a look HERE.

11. Employees of NASA have always been a mission driven bunch, who try to find answers that were previously unknown

The film “Hidden Figures,” focuses on the stories of Katherine Johnson, Mary Jackson and Dorothy Vaughan, African-American women who were essential to the success of early spaceflight. 

Today, we embrace their legacy and strive to include everyone who wants to participate in our ongoing exploration. In the 1960’s, we were on an ambitious journey to the moon, and the human computers portrayed in Hidden Figures helped get us there. Today, we are on an even more ambitious journey to Mars. We are building a vibrant, innovative workforce that reflects a vast diversity of discipline and thought, embracing and nurturing all the talent we have available, regardless of gender, race or other protected status. Take a look at our Modern Figures HERE.

12. A lot of NASA-developed tech has been transferred for use to the public 

Our Technology Transfer Program highlights technologies that were originally designed for our mission needs, but have since been introduced to the public market. HERE are a few spinoff technologies that you might not know about.

13. If all else fails, here’s an image of what we (Earth) and the moon look like from Mars  

image

From the most powerful telescope orbiting Mars comes a new view of Earth and its moon, showing continent-size detail on the planet and the relative size of the moon. The image combines two separate exposures taken on Nov. 20 by our High Resolution Imaging Science Experiment (HiRISE) camera on our Mars Reconnaissance Orbiter.

In the image, the reddish feature near the middle of the face of Earth is Australia.


Tags
Loading...
End of content
No more pages to load
  • mettwingramatel
    mettwingramatel liked this · 1 year ago
  • exo-plushie
    exo-plushie liked this · 2 years ago
  • comeoffage
    comeoffage reblogged this · 4 years ago
  • the-demon-colonel
    the-demon-colonel liked this · 4 years ago
  • andrejupiter
    andrejupiter liked this · 4 years ago
  • alux-ulkan
    alux-ulkan liked this · 4 years ago
  • gatebreaker
    gatebreaker reblogged this · 4 years ago
  • gatebreaker
    gatebreaker liked this · 4 years ago
  • theedgeofadaydream
    theedgeofadaydream liked this · 5 years ago
  • overthemoon-underthestars
    overthemoon-underthestars liked this · 5 years ago
  • xidigahacirka
    xidigahacirka liked this · 5 years ago
  • scienzaefantasia
    scienzaefantasia reblogged this · 5 years ago
  • scienzaefantasia
    scienzaefantasia liked this · 5 years ago
  • dinasilvertongue
    dinasilvertongue reblogged this · 5 years ago
  • michelangelina
    michelangelina reblogged this · 5 years ago
  • will-ruadh
    will-ruadh liked this · 5 years ago
  • scienceandtechnologymatter
    scienceandtechnologymatter liked this · 6 years ago
  • starlight1012
    starlight1012 liked this · 6 years ago
  • starlight1012
    starlight1012 reblogged this · 6 years ago
  • undernewmanagenent
    undernewmanagenent reblogged this · 6 years ago
  • agentofmcu
    agentofmcu liked this · 6 years ago
  • frogmuttforever
    frogmuttforever liked this · 6 years ago
  • whyhellotheregandalf
    whyhellotheregandalf liked this · 6 years ago
  • theparanoidpachyderm
    theparanoidpachyderm reblogged this · 6 years ago
  • theparanoidpachyderm
    theparanoidpachyderm liked this · 6 years ago
  • blueinkblot
    blueinkblot reblogged this · 6 years ago
  • lady-of-tarth
    lady-of-tarth liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags