Space may seem empty, but it’s actually a dynamic place, dominated by invisible forces, including those created by magnetic fields. Magnetospheres – the areas around planets and stars dominated by their magnetic fields – are found throughout our solar system. They deflect high-energy, charged particles called cosmic rays that are mostly spewed out by the sun, but can also come from interstellar space. Along with atmospheres, they help protect the planets’ surfaces from this harmful radiation.
It’s possible that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, so finding magnetospheres around other planets is a big step toward determining if they could support life.
But not all magnetospheres are created equal – even in our own backyard, not all planets in our solar system have a magnetic field, and the ones we have observed are all surprisingly different.
Earth’s magnetosphere is created by the constantly moving molten metal inside Earth. This invisible “force field” around our planet has an ice cream cone-like shape, with a rounded front and a long, trailing tail that faces away from the sun. The magnetosphere is shaped that way because of the constant pressure from the solar wind and magnetic fields on the sun-facing side.
Earth’s magnetosphere deflects most charged particles away from our planet – but some do become trapped in the magnetic field and create auroras when they rain down into the atmosphere.
We have several missions that study Earth’s magnetosphere – including the Magnetospheric Multiscale mission, Van Allen Probes, and Time History of Events and Macroscale Interactions during Substorms (also known as THEMIS) – along with a host of other satellites that study other aspects of the sun-Earth connection.
Mercury, with a substantial iron-rich core, has a magnetic field that is only about 1% as strong as Earth’s. It is thought that the planet’s magnetosphere is stifled by the intense solar wind, limiting its strength, although even without this effect, it still would not be as strong as Earth’s. The MESSENGER satellite orbited Mercury from 2011 to 2015, helping us understand our tiny terrestrial neighbor.
After the sun, Jupiter has by far the biggest magnetosphere in our solar system – it stretches about 12 million miles from east to west, almost 15 times the width of the sun. (Earth’s, on the other hand, could easily fit inside the sun.) Jupiter does not have a molten metal core like Earth; instead, its magnetic field is created by a core of compressed liquid metallic hydrogen.
One of Jupiter’s moons, Io, has intense volcanic activity that spews particles into Jupiter’s magnetosphere. These particles create intense radiation belts and the large auroras around Jupiter’s poles.
Ganymede, Jupiter’s largest moon, also has its own magnetic field and magnetosphere – making it the only moon with one. Its weak field, nestled in Jupiter’s enormous shell, scarcely ruffles the planet’s magnetic field.
Our Juno mission orbits inside the Jovian magnetosphere sending back observations so we can better understand this region. Previous observations have been received from Pioneers 10 and 11, Voyagers 1 and 2, Ulysses, Galileo and Cassini in their flybys and orbits around Jupiter.
Saturn’s moon Enceladus transforms the shape of its magnetosphere. Active geysers on the moon’s south pole eject oxygen and water molecules into the space around the planet. These particles, much like Io’s volcanic emissions at Jupiter, generate the auroras around the planet’s poles. Our Cassini mission studies Saturn’s magnetic field and auroras, as well as its moon Enceladus.
Uranus’ magnetosphere wasn't discovered until 1986 when data from Voyager 2’s flyby revealed weak, variable radio emissions. Uranus’ magnetic field and rotation axis are out of alignment by 59 degrees, unlike Earth’s, whose magnetic field and rotation axis differ by only 11 degrees. On top of that, the magnetic field axis does not go through the center of the planet, so the strength of the magnetic field varies dramatically across the surface. This misalignment also means that Uranus’ magnetotail – the part of the magnetosphere that trails away from the sun – is twisted into a long corkscrew.
Neptune’s magnetosphere is also tilted from its rotation axis, but only by 47. Just like on Uranus, Neptune’s magnetic field strength varies across the planet. This also means that auroras can be seen away from the planet’s poles – not just at high latitudes, like on Earth, Jupiter and Saturn.
Neither Venus nor Mars have global magnetic fields, although the interaction of the solar wind with their atmospheres does produce what scientists call an “induced magnetosphere.” Around these planets, the atmosphere deflects the solar wind particles, causing the solar wind’s magnetic field to wrap around the planet in a shape similar to Earth’s magnetosphere.
Outside of our solar system, auroras, which indicate the presence of a magnetosphere, have been spotted on brown dwarfs – objects that are bigger than planets but smaller than stars.
There’s also evidence to suggest that some giant exoplanets have magnetospheres. As scientists now believe that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, finding magnetospheres around exoplanets is a big step in finding habitable worlds.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Spitzer Space Telescope is celebrating 15 years since its launch on August 25, 2003. This remarkable spacecraft has made discoveries its designers never even imagined, including some of the seven Earth-size planets of TRAPPIST-1. Here are some key facts about Spitzer:
Our Great Observatory Program aimed to explore the universe with four large space telescopes, each specialized in viewing the universe in different wavelengths of light. The other Great Observatories are our Hubble Space Telescope, Chandra X-Ray Observatory, and Compton Gamma-Ray Observatory. By combining data from different kinds of telescopes, scientists can paint a fuller picture of our universe.
Infrared wavelengths of light, which primarily come from heat radiation, are too long to be seen with human eyes, but are important for exploring space — especially when it comes to getting information about something extremely far away. From turbulent clouds where stars are born to small asteroids close to Earth’s orbit, a wide range of phenomena can be studied in infrared light. Objects too faint or distant for optical telescopes to detect, hidden by dense clouds of space dust, can often be seen with Spitzer. In this way, Spitzer acts as an extension of human vision to explore the universe, near and far.
What’s more, Spitzer doesn’t have to contend with Earth’s atmosphere, daily temperature variations or day-night cycles, unlike ground-based telescopes. With a mirror less than 1 meter in diameter, Spitzer in space is more sensitive than even a 10-meter-diameter telescope on Earth.
Rather than circling Earth, as Hubble does, Spitzer orbits the Sun on almost the same path as Earth. But Spitzer moves slower than Earth, so the spacecraft drifts farther away from our planet each year.
This “Earth-trailing orbit” has many advantages. Being farther from Earth than a satellite, it receives less heat from our planet and enjoys a naturally cooler environment. Spitzer also benefits from a wider view of the sky by orbiting the Sun. While its field of view changes throughout the year, at any given time it can see about one-third of the sky. Our Kepler space telescope, famous for finding thousands of exoplanets – planets outside our solar system -- also settled in an Earth-trailing orbit six years after Spitzer.
Spitzer has far outlived its initial requirement of 2.5 years. The Spitzer team calls the first 5.5 years “the cold mission” because the spacecraft’s instruments were deliberately cooled down during that time. Liquid helium coolant kept Spitzer’s instruments just a few degrees above absolute zero (which is minus 459 degrees Fahrenheit, or minus 273 degrees Celsius) in this first part of the mission.
Spitzer entered what was called the “warm mission” when the 360 liters of liquid helium coolant that was chilling its instruments ran out in May 2009.
At the “warm” temperature of minus 405 Fahrenheit, two of Spitzer's instruments -- the Infrared Spectrograph (IRS) and Multiband Imaging Photometer (MIPS) -- stopped working. But two of the four detector arrays in the Infrared Array Camera (IRAC) persisted. These “channels” of the camera have driven Spitzer’s explorations since then.
Exoplanet science was in its infancy in 2003 when Spitzer launched, so the mission’s first scientists and engineers had no idea it could observe planets beyond our solar system. But the telescope’s accurate star-targeting system and the ability to control unwanted changes in temperature have made it a useful tool for studying exoplanets. During the Spitzer mission, engineers have learned how to control the spacecraft’s pointing more precisely to find and characterize exoplanets, too.
Using what’s called the “transit method,” Spitzer can stare at a star and detect periodic dips in brightness that happen when a planet crosses a star’s face. In one of its most remarkable achievements, Spitzer discovered three of the TRAPPIST-1 planets and confirmed that the system has seven Earth-sized planets orbiting an ultra-cool dwarf star. Spitzer data also helped scientists determine that all seven planets are rocky, and made these the best-understood exoplanets to date.
Spitzer can also use a technique called microlensing to find planets closer to the center of our galaxy. When a star passes in front of another star, the gravity of the first star can act as a lens, making the light from the more distant star appear brighter. Scientists are using microlensing to look for a blip in that brightening, which could mean that the foreground star has a planet orbiting it. Microlensing could not have been done early in the mission when Spitzer was closer to Earth, but now that the spacecraft is farther away, it has a better chance of measuring these events.
The spacecraft has observed and helped discover some of the most distant objects in the universe, helping scientists understand where we came from. Originally, Spitzer’s camera designers had hoped the spacecraft would detect galaxies about 12 billion light-years away. In fact, Spitzer has surpassed that, and can see even farther back in time – almost to the beginning of the universe. In collaboration with Hubble, Spitzer helped characterize the galaxy GN-z11 about 13.4 billion light-years away, whose light has been traveling since 400 million years after the big bang. It is the farthest galaxy known.
Everyone knows Saturn has distinctive rings, but did you know its largest ring was only discovered in 2009, thanks to Spitzer? Because this outer ring doesn’t reflect much visible light, Earth-based telescopes would have a hard time seeing it. But Spitzer saw the infrared glow from the cool dust in the ring. It begins 3.7 million miles (6 million kilometers) from Saturn and extends about 7.4 million miles (12 million kilometers) beyond that.
In 2016, Spitzer entered its “Beyond phase,” with a name reflecting how the spacecraft operates beyond its original scope.
As Spitzer floats away from Earth, its increasing distance presents communication challenges. Engineers must point Spitzer’s antenna at higher angles toward the Sun in order to talk to our planet, which exposes the spacecraft to more heat. At the same time, the spacecraft’s solar panels receive less sunlight because they point away from the Sun, putting more stress on the battery.
The team decided to override some autonomous safety systems so Spitzer could continue to operate in this riskier mode. But so far, the Beyond phase is going smoothly.
Spitzer has identified areas of further study for our upcoming James Webb Space Telescope, planned to launch in 2021. Webb will also explore the universe in infrared light, picking up where Spitzer eventually will leave off. With its enhanced ability to probe planetary atmospheres, Webb may reveal striking new details about exoplanets that Spitzer found. Distant galaxies unveiled by Spitzer together with other telescopes will also be observed in further detail by Webb. The space telescope we are planning after that, WFIRST, will also investigate long-standing mysteries by looking at infrared light. Scientists planning studies with future infrared telescopes will naturally build upon the pioneering legacy of Spitzer.
Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our future Mars 2020 rover, seen here as imagined through the eyes of an artist, will search for signs of past microbial life. The mission will take the next step in exploring the Red Planet by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself.
The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020, aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Learn more.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This image from our Juno spacecraft was captured in North North Temperate Belt. Image Credit: Enhanced Image by Gerald Eichstädt and Sean Doran (CC BY-NC-SA)/NASA/JPL-Caltech/SwRI/MSSS
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today, June 23 is International Women in Engineering Day. We have many talented women across NASA that contribute to our success to reach for new heights and reveal the unknown for the benefit of humankind.
Happy Int'l Women in Engr Day! Love working @nasa to plan spacewalks, train astronauts, & flight control! #INWED17 #IAmANASAEngineer #nasa pic.twitter.com/pasndXB8sS
— Grier Wilt (@grierlauren)
June 23, 2017
Hearing from them illuminates the vibrant community of dedicated women who play a vital role at the agency. These women have pushed to pursue their dreams and make a difference everyday at NASA.
Happy International Women in Engineering Day! #INWED17 #IAmANASAEngineer pic.twitter.com/yvhhAzGUYv
— ~Alexandria~ (@DOPECHICKBEATS)
June 23, 2017
We hope that these stories will inspire girls everywhere to reach for the stars and explore the myriad of opportunities available to them through pursuing careers in science, technology, engineering and mathematics.
Proud to call these awesome @NASA_Johnson women engineers my friends! Happy Int'l Women in Engineering Day! #INWED17 #IAmANASAEngineer @NASA pic.twitter.com/qGSiR2xVFo
— Jenny On Console (@JennyOnConsole)
June 23, 2017
Join us as we celebrate the achievements of our outstanding women engineers.
Happy International Women in Engineering Day!#IAmANASAEngineer #INWED17 #INWED2017 #KSC @NASA_LSP @NASA @NASAKennedy @kelleyjoooones pic.twitter.com/RRCt75ff5g
— Laura P. Rose (@lauraprose)
June 23, 2017
Learn more and hear stories from the Women at NASA community by visiting http://women.nasa.gov.
We are the smart, incredible women of @LockheedMartin that are building @NASA_Orion at @NASAKennedy ! #INWED17 #IAmANASAEngineer pic.twitter.com/HurWOvhYIn
— Chelsea (@Queen_Of_Quarks)
June 23, 2017
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Earth's gravity is going to slingshot OSIRIS-REx toward its target, an asteroid named Bennu.
Asteroids are relatively small, inactive, rocky bodies that orbit around the Sun. Scientists think asteroids like Bennu may have collided with Earth a long time ago, seeding our planet with the organic compounds that made life possible. That means that there's a good chance Bennu contains answers to fundamental questions about the origins of life and how our solar system came to be. We sent OSIRIS-REx on a journey to investigate.
One of the best ways to change the trajectory of a spacecraft is by using the gravity of a planet or large moon to catapult it. It sounds like science fiction, but this type of maneuver, called a gravity assist, is a fuel-efficient way of traveling through space.
We’re not using the slingshot to speed the spacecraft, we’re doing it to change its direction. That’s because the asteroid’s orbit is tilted six degrees in comparison to Earth's orbit. When OSIRIS-REx swings by, Earth's gravity will lift it up and sling it toward Bennu.
Because at its closest approach OSIRIS-REx will only be 11,000 miles above Earth, you can see it with a backyard telescope. For most observers, the spacecraft will appear between the constellations Cetus and Pisces, but its exact position in the sky will vary by location.
For specifics on locating and photographing OSIRIS-REx, visit our Spot the Spacecraft page.
After its closest approach, OSIRIS-REx flip around and look back at Earth, so here's your chance to say hello! Take a picture of yourself or your group waving to OSIRIS-REx. Then share your photo using the hashtag #HelloOSIRISREx and tag the mission account on Twitter @OSIRISREx or Instagram @OSIRIS_REx.
In about a year from now, OSIRIS-REx will arrive at asteroid Bennu.
After it surveys and maps Bennu, OSIRIS-REx will "high-five" the asteroid with its robotic arm to collect a sample, which it will send to Earth. This asteroid sample will be the largest amount of space material transported to Earth since we brought back rocks from the Moon. High-fives all around!
If everything goes according to plan, on Sept. 24, 2023, the capsule containing the asteroid sample will make a soft landing in the Utah desert. That’s the end of the spacecraft’s seven-year-long journey to Bennu and back.
But the mission doesn't stop there. On Earth, the sample material collected by OSIRIS-REx will be analyzed to determine the asteroid's chemical composition. Scientists will look for organic compounds like amino acids and sugars — the building blocks for life.
Bennu is approximately 4.5 billion years old. Our solar system is 4.6 billion years old. That means that Bennu is made up of some of the oldest stuff in our solar system. So samples from Bennu could tell us more about how our solar system evolved and possibly even how life began on Earth! Learn more about asteroid Bennu, the OSIRIS-REx mission and the Earth gravity assist.
Follow the mission on Facebook and Twitter for the latest updates.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Location: In the constellation Ursa Major
Type: Flocculent spiral galaxy
Discovered by: William Herschel
NGC 2841 is a beautiful example of a flocculent spiral galaxy – a type with discontinuous, featherlike, and patchy arms. A bright cusp of starlight distinguishes the galaxy's center from the dust lanes that outline the group of almost white middle-aged stars. The far younger blue stars trace the spiral arms.
Find out more information about NGC 2841 here.
Right now, the Hubble Space Telescope is exploring #GalaxiesGalore! Find more galaxy content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.
Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: M. Crockett and S. Kaviraj (Oxford University, UK), R. O'Connell (University of Virginia), B. Whitmore (STScI), and the WFC3 Scientific Oversight Committee
Halloween is just around the corner. Need some chilling décor? We’ve got you – and your walls – covered with three new Galaxy of Horrors posters that showcase some of the most terrifying topics in the universe.
In the depths of the universe, the cores of two collapsed stars violently merge to release a burst of the deadliest and most powerful form of light, known as gamma rays. These beams of doom are unleashed upon their unfortunate surroundings, shining a billion trillion times brighter than the Sun for up to 30 terrifying seconds. No spaceship will shield you from their blinding destruction!
The chillingly haunted galaxy called MACS 2129-1 mysteriously stopped making stars only a few billion years after the Big Bang. It became a cosmic cemetery, illuminated by the red glow of decaying stars. Dare to enter and you might encounter the frightening corpses of exoplanets or the final death throes of once-mighty stars.
Something strange and mysterious creeps throughout the cosmos. Scientists call it dark matter. It is scattered in an intricate web that forms the skeleton of our universe. Dark matter is invisible, only revealing its presence by pushing and pulling on objects we can see. NASA’s Roman Space Telescope will investigate its secrets. What will it find?
Download the full set in English and Spanish here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Not long after midnight on Dec. 7, 1972, the last crewed mission to the Moon, Apollo 17, lifted off with three astronauts: Eugene Cernan, Harrison Schmitt, and Ronald Evans.
Experience the Apollo 17 launch and follow the mission in real time.
Let’s meet the astronauts who made the final Apollo trip to the Moon, including the first scientist-astronaut.
Gene Cernan: In 1972, Apollo 17 Mission Commander Eugene A. Cernan had two space flights under his belt, Gemini 9 in June 1966, and Apollo 10 in May 1969. He was a naval aviator, electrical and aeronautical engineer and fighter pilot.
Ron Evans: Apollo 17 Command Module Pilot Ronald E. Evans was selected as a member of the 4th group of NASA astronauts in 1966. Like Cernan, he was an electrical and aeronautical engineer, and naval aviator before his assignment to the Apollo 17 crew.
Harrison (Jack) Schmitt: Lunar Module Pilot Dr. Harrison (Jack) Schmitt joined NASA as a member of the first group of scientist-astronauts in 1965. Before working for NASA, Schmitt was a geologist at the USGS Astrogeology Center. He was on the backup crew for Apollo 15 before being selected for the prime crew of Apollo 17. He became the first of the scientist-astronauts to go to space and the 12th human to walk on the Moon.
“The Blue Marble,” one of the most reproduced images in history, was taken 50 years ago on Dec. 7, 1972 by the Apollo 17 crew as they made their way to the Moon.
NASA astronauts have an array of menu items to stay well fed and hydrated on missions. For Apollo 17, the menus allocated around 2,500 calories per day for each astronaut. They included:
Bacon Squares
Peanut Butter Sandwiches
Frankfurters
Lobster Bisque
Like anything going to space, weight and containment matter. That's why the Apollo 17 menu included plenty of soups and puddings.
On Dec. 11, 2022, the Artemis I mission will be splashing down on Earth after its 25.5-day mission. At 2:55 p.m. 50 years prior, the Apollo 17 lunar module (LM) landed on the Moon, with Commander Gene Cernan and LM Pilot Harrison Schmitt on board. Ron Evans remained in the Command and Service Module (CSM) orbiting the Moon.
Experience the landing.
One of the first tasks the Apollo 17 crew did on their first moonwalk was to plant the American flag. There’s no wind on the Moon, but that doesn’t mean the flag has to droop. Did you know that a horizontal rod with a latch makes the flag appear to be flying in the wind? Gene Cernan carefully composed this photo to get Schmitt, the flag, and the Earth in a single shot.
So, is the flag still there? Images of the Apollo 17 landing site from the Lunar Reconnaissance Orbiter Camera show that in 2011 the flag was still standing and casting a shadow!
During Apollo 17, the Lunar Rover Vehicle (LRV), nicknamed the Moon buggy, logged the farthest distance from the Lunar Module of any Apollo mission, about 4.7 miles (7.5 km).
As a precaution, the LRV had a walk-back limit in the event of an issue; astronauts had to have enough resources to walk back to the lunar module if need be.
The right rear fender extension of the LRV (Moon buggy) was torn off, kicking up dust as the crew drove, reducing visibility. The crew made a resourceful repair using duct tape and maps.
For LRV fans, visiting an LRV driven on the Moon is a bit difficult since all three LRVs used on the Apollo 15, 16, and 17 missions were left on the Moon. But you can find an LRV used for training at the National Air and Space Museum in Washington. Read more about the LRV.
After the first lunar EVA, Apollo 17 astronaut Harrison Schmitt reported that he suffered from “lunar hay fever” in reaction to the lunar dust. Unlike Earth’s dust particles which are rounded, Moon dust particles are sharp and abrasive, irritating astronaut eyes, nasal passages, and lungs.
Curious about how Moon dust feels and smells? Find out!
After his return to Earth, Apollo 17 astronaut Harrison Schmitt (on the right) described his time on the Moon:
“Working on the Moon is a lot of fun. It’s like walking around on a giant trampoline all the time and you’re just as strong as you were here on Earth, but you don’t weigh as much.”
After 12 days and 14 hours in space, the Apollo 17 astronauts splashed down in the Pacific Ocean at 2:25 p.m. EST on Dec. 19, 1972. It was the longest of all the Apollo missions, with the most photos taken. A recovery team was waiting on the USS Ticonderoga just 4 miles (6.4 km) away to pick up the astronauts, the lunar samples, and the Crew Module.
NASA’s Artemis Program has taken its first steps to sending humans back to the Moon with Artemis I, currently on its way back to Earth. The program plans to land humans, including the first women and person of color, on the Moon’s south polar region with its Artemis III mission, currently slated to launch in 2025.
Is aerospace history your cup of tea? Be sure to check out more from NASA’s past missions at www.nasa.gov/history.
Make sure to follow us on Tumblr for your regular dose of space!
Jupiter’s vibrant bands of light belts and dark regions appear primed for their close-up during our Juno spacecraft’s 10th flyby on Feb. 7. This flyby was a gravity science positioned pass. During orbits that highlight gravity experiments, Juno is positioned toward Earth in a way that allows both transmitters to downlink data in real-time to one of the antennas of our Deep Space Network. All of Juno’s science instruments and the spacecraft’s JunoCam were in operation during the flyby, collecting data that is now being returned to Earth. The science behind this beautifully choreographed image will help us understand the origin and structure of the planet beneath those lush, swirling clouds.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Image Credit: NASA/Roscosmos
As we celebrate 20 years of humans living and working on the International Space Station, we’re also getting ready for another space milestone: Crew-1, this weekend’s trip to the ISS aboard the SpaceX Crew Dragon Resilience and the first certified crew rotation flight to the International Space Station.
Crew-1 is scheduled to lift off Saturday at 7:49 PM EST, from our Kennedy Space Center—but across the United States, teams from NASA and SpaceX will be hard at work sending our astronauts into orbit!
Image Credit: NASA/Fred Deaton
At Marshall Space Flight Center’s Huntsville Operations Support Center (HOSC), for example, engineers with our Commercial Crew Program have been helping review the design and oversee safety standards for SpaceX’s Falcon 9 rocket, making sure it’s ready to carry humans to the Space Station.
This Saturday, they’ll be in the HOSC to monitor launch conditions and watch the data as Crew-1 blasts off, helping future commercially-operated missions to the ISS run even more smoothly.
Image Credit: NASA/Emmett Given
Long before Crew-1, though, Marshall has been keeping things active on board the ISS. For decades, the Payload Operations and Integration Center, also located in the HOSC, has been “science central” for the Space Station, coordinating and keeping track of the scientific experiments taking place—24/7, 365 days a year.
With the Space Station’s population soon to jump from three to seven, our ISS crew will be able to spend up to 70 hours a week on science, helping us learn how to live in space while making life better on Earth!
Image Credit: NASA/Fred Deaton
Want to learn more about how America is coming together to launch Crew-1? Join us this afternoon (1 p.m. EST, Thursday, November 12) for a Reddit “Ask Me Anything” with experts from across the nation—then follow along on November 14 as we #LaunchAmerica!
Live coverage on NASA TV and social media starts at 3:30 PM EST. See you then!
Image Credit: NASA/Emmett Given
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts