Solar System: Things To Know This Week

Solar System: Things to Know This Week

10 Tools for the Armchair Astronaut, or  How to Explore the Solar System from Home

At this very moment, spacecraft are surveying the solar system, from Mars, to Saturn, to Pluto and beyond. Now you can ride along to see the latest discoveries from deep space. For this week's edition of 10 Things, we've assembled a toolkit of 10 essential resources for the desktop astronaut.  

image

1. It's Like Facebook, but for Planets

Or is it more of a Hitchhiker's Guide to the Solar System? Whatever one calls it, our planets page offers quick rundowns, as well as in-depth guides, for all the major bodies in the solar system. Explore from the sun all the way to the Oort Cloud.

+ Peruse the planets + See how objects in the solar system stack up against each other

image

2. Keep Your Eyes on This One

If you still haven't tried Eyes on the Solar System, you're missing out. This free, downloadable simulation app lets you tour the planets and track the past, current and future positions of spacecraft--all in 3D. Eyes on the Solar System uses real NASA data to help you take a virtual flight across both space and time.

+ Prepare for departure

image

3. Dateline: Deep Space

With so much exploration underway, discoveries and new insights into the solar system come at a pace that borders on bewildering. NASA is rewriting the textbooks, literally, on a regular basis. Relax, though: there are several easy ways to stay up to date with what's happening in space.

+ See the latest headlines + Stay connected on social media: Twitter, Facebook, Instagram + Find more top NASA social media accounts

image

4. Space? There's an App for That

NASA offers phone and tablet apps for star gazing, pictures, news, 3D tours, satellite tracking, live NASA TV and many other kinds of info.

+ Start downloading + See other cool apps

image

5. A (Very) Long Distance Call

We’re in constant communication with spacecraft all over the solar system. The Deep Space Network is a global network of giant antenna dishes that makes it possible. With this online app, you can learn how it works -- and even see which spacecraft are phoning home right now.

+ Deep Space Network (DSN) Now

image

6. Collect 'Em All

Spacecraft 3D is an augmented reality (AR) application that lets you learn about and interact with a variety of spacecraft that are used to explore our solar system, study Earth and observe the universe. Print out the AR target and your camera will do the rest, making the spacecraft appear in 3D right in front of you. Learn more about these robotic explorers as they pop up on your desk, in your hand, or on your dog's head.

+ Download Spacecraft 3D + See more cool 3-D resources from NASA

image

7. Ever Wanted to Drive a Mars Rover?

This site will give you a 3D look at the Mars Curiosity rover, along with some of the terrain it has explored. It will even let you take the controls.

+ Experience Curiosity

image

8. More E-Ticket Attractions

But wait, there's more. NASA offers a variety of other fascinating (and free) online experiences, all based on actual data from real missions. Here are a few to explore:

+ Mars Trek + Vesta Trek + Moon Trek

image

9. The Universe Is Our Classroom

Studying the solar system makes for a compelling route into learning and teaching science, engineering and math. We have some great places to start.

+ Find resources for teachers + Build your own solar system with your classroom

image

10. Bring It on Home

After you've toured the far reaches of the solar system, you can always come home again. When you have spent time studying the harsh conditions on our neighboring planets, the charms of a unique paradise come into sharp focus, the place we call Earth.

+ Watch a real-time video feed from Earth orbit + See a daily global view of our planet from a million miles away + Hold the earth in your hands with the Earth Now mobile app

Discover more lists of 10 things to know about our solar system HERE.

Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

8 months ago

25 Years of Exploring the Universe with NASA's Chandra Xray Observatory

Illustration of the Chandra telescope in orbit around Earth.

Illustration of the Chandra telescope in orbit around Earth. Credit: NASA/CXC & J. Vaughan

On July 23, 1999, the space shuttle Columbia launched into orbit carrying NASA’s Chandra X-ray Observatory. August 26 marked 25 years since Chandra released its first images.

These were the first of more than 25,000 observations Chandra has taken. This year, as NASA celebrates the 25th anniversary of this telescope and the incredible data it has provided, we’re taking a peek at some of its most memorable moments.

About the Spacecraft

The Chandra telescope system uses four specialized mirrors to observe X-ray emissions across the universe. X-rays that strike a “regular” mirror head on will be absorbed, so Chandra’s mirrors are shaped like barrels and precisely constructed. The rest of the spacecraft system provides the support structure and environment necessary for the telescope and the science instruments to work as an observatory. To provide motion to the observatory, Chandra has two different sets of thrusters. To control the temperatures of critical components, Chandra's thermal control system consists of a cooling radiator, insulators, heaters, and thermostats. Chandra's electrical power comes from its solar arrays.

Learn more about the spacecraft's components that were developed and tested at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Fun fact: If the state of Colorado were as smooth as the surface of the Chandra X-ray Observatory mirrors, Pike's Peak would be less than an inch tall.

Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrating the Chandra X-ray Observatory’s High-Resolution Camera with the mirror assembly, in this photo taken March 16, 1997.

Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrating the Chandra X-ray Observatory’s High-Resolution Camera with the mirror assembly, in this photo taken March 16, 1997. Credit: NASA

Launch

When space shuttle Columbia launched on July 23, 1999, Chandra was the heaviest and largest payload ever launched by the shuttle. Under the command of Col. Eileen Collins, Columbia lifted off the launch pad at NASA’s Kennedy Space Center in Florida. Chandra was deployed on the mission’s first day.

Reflected in the waters, space shuttle Columbia rockets into the night sky from Launch Pad 39-B on mission STS-93 from Kennedy Space Center.

Reflected in the waters, space shuttle Columbia rockets into the night sky from Launch Pad 39-B on mission STS-93 from Kennedy Space Center. Credit: NASA

First Light Images

Just 34 days after launch, extraordinary first images from our Chandra X-ray Observatory were released. The image of supernova remnant Cassiopeia A traces the aftermath of a gigantic stellar explosion in such captivating detail that scientists can see evidence of what is likely the neutron star.

“We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour,” said Harvey Tananbaum, founding Director of the Chandra X-ray Center at the Smithsonian Astrophysical Observatory.

Cassiopeia A is the remnant of a star that exploded about 300 years ago. The X-ray image shows an expanding shell of hot gas produced by the explosion colored in bright orange and yellows.

Cassiopeia A is the remnant of a star that exploded about 300 years ago. The X-ray image shows an expanding shell of hot gas produced by the explosion colored in bright orange and yellows. Credit: NASA/CXC/SAO

A New Look at the Universe

NASA released 25 never-before-seen views to celebrate the telescopes 25th anniversary. This collection contains different types of objects in space and includes a new look at Cassiopeia A. Here the supernova remnant is seen with a quarter-century worth of Chandra observations (blue) plus recent views from NASA’s James Webb Space Telescope (grey and gold).

This image features deep data of the Cassiopeia A supernova, an expanding ball of matter and energy ejected from an exploding star in blues, greys and golds. The Cassiopeia A supernova remnant has been observed for over 2 million seconds since the start of Chandra’s mission in 1999 and has also recently been viewed by the James Webb Space Telescope.

This image features deep data of the Cassiopeia A supernova, an expanding ball of matter and energy ejected from an exploding star in blues, greys and golds. The Cassiopeia A supernova remnant has been observed for over 2 million seconds since the start of Chandra’s mission in 1999 and has also recently been viewed by the James Webb Space Telescope. Credit: NASA/CXC/SAO

Can You Hear Me Now?

In 2020, experts at the Chandra X-ray Center/Smithsonian Astrophysical Observatory (SAO) and SYSTEM Sounds began the first ongoing, sustained effort at NASA to “sonify” (turn into sound) astronomical data. Data from NASA observatories such as Chandra, the Hubble Space Telescope, and the James Webb Space Telescope, has been translated into frequencies that can be heard by the human ear.

SAO Research shows that sonifications help many types of learners – especially those who are low-vision or blind -- engage with and enjoy astronomical data more.

Click to watch the “Listen to the Universe” documentary on NASA+ that explores our sonification work: Listen to the Universe | NASA+

An image of the striking croissant-shaped planetary nebula called the Cat’s Eye, with data from the Chandra X-ray Observatory and Hubble Space Telescope.  NASA’s Data sonification from Chandra, Hubble and/or Webb telecopes allows us to hear data of cosmic objects.

An image of the striking croissant-shaped planetary nebula called the Cat’s Eye, with data from the Chandra X-ray Observatory and Hubble Space Telescope.  NASA’s Data sonification from Chandra, Hubble and/or Webb telecopes allows us to hear data of cosmic objects. Credit: NASA/CXO/SAO

Celebrate With Us!

Dedicated teams of engineers, designers, test technicians, and analysts at Marshall Space Flight Center in Huntsville, Alabama, are celebrating with partners at the Chandra X-ray Center and elsewhere outside and across the agency for the 25th anniversary of the Chandra X-ray Observatory. Their hard work keeps the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more.

Chandra will continue its mission to deepen our understanding of the origin and evolution of the cosmos, helping all of us explore the Universe.

The Chandra Xray Observatory, the longest cargo ever carried to space aboard the space shuttle, is shown in Columbia’s payload bay. This photo of the payload bay with its doors open was taken just before Chandra was tilted upward for release and deployed on July 23, 1999.

The Chandra Xray Observatory, the longest cargo ever carried to space aboard the space shuttle, is shown in Columbia’s payload bay. This photo of the payload bay with its doors open was taken just before Chandra was tilted upward for release and deployed on July 23, 1999. Credit: NASA

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: Things to Know This Week

Jupiter, our solar system's largest planet, is making a good showing in night skies this month. Look for it in the southeast in each evening. With binoculars, you may be able to see the planet's four largest moons. Here are some need-to-know facts about the King of the Planets.

image

1. The Biggest Planet:

With a radius of 43,440.7 miles (69,911 kilometers), Jupiter is 11 times wider than Earth. If Earth were the size of a nickel, Jupiter would be about as big as a basketball.

image

2. Fifth in Line

Jupiter orbits our sun, and is the fifth planet from the sun at a distance of about 484 million miles (778 million km) or 5.2 Astronomical Units (AU). Earth is one AU from the sun.

image

3. Short Day / Long Year

One day on Jupiter takes about 10 hours (the time it takes for Jupiter to rotate or spin once). Jupiter makes a complete orbit around the sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days).

image

4. What's Inside?

Jupiter is a gas-giant planet without a solid surface. However, the planet may have a solid, inner core about the size of Earth.

image

5. Atmosphere

Jupiter's atmosphere is made up mostly of hydrogen (H2) and helium (He).

image

6. Many Moons

Jupiter has 53 known moons, with an additional 14 moons awaiting confirmation of their discovery — a total of 67 moons.

image

7. Ringed World

All four giant planets in our solar system have ring systems and Jupiter is no exception. Its faint ring system was discovered in 1979 by the Voyager 1 mission. 

image

8. Exploring Jupiter:

Many missions have visited Jupiter and its system of moons. The Juno spacecraft is currently orbiting Jupiter.

image

9. Ingredients for Life?

Jupiter cannot support life as we know it. However, some of Jupiter's moons have oceans underneath their crusts that might support life.

image

10. Did You Know?

Jupiter's Great Red Spot is a gigantic storm (about the size of Earth) that has been raging for hundreds of years.

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Five Record-Setting Gamma-ray Bursts!

For 10 years, our Fermi Gamma-ray Space Telescope has scanned the sky for gamma-ray bursts (GRBs), the universe’s most luminous explosions!

image

Most GRBs occur when some types of massive stars run out of fuel and collapse to create new black holes. Others happen when two neutron stars, superdense remnants of stellar explosions, merge. Both kinds of cataclysmic events create jets of particles that move near the speed of light.

A new catalog of the highest-energy blasts provides scientists with fresh insights into how they work. Below are five record-setting events from the catalog that have helped scientists learn more about GRBs:

1. Super-short burst in Boötes!

image

The short burst 081102B, which occurred in the constellation Boötes on Nov. 2, 2008, is the briefest LAT-detected GRB, lasting just one-tenth of a second!

2. Long-lived burst!

image

Long-lived burst 160623A, spotted on June 23, 2016, in the constellation Cygnus, kept shining for almost 10 hours at LAT energies — the longest burst in the catalog.

For both long and short bursts, the high-energy gamma-ray emission lasts longer than the low-energy emission and happens later.

3. Highest energy gamma-rays!

image

The highest-energy individual gamma ray detected by Fermi’s LAT reached 94 billion electron volts (GeV) and traveled 3.8 billion light-years from the constellation Leo. It was emitted by 130427A, which also holds the record for the most gamma rays — 17 — with energies above 10 GeV.

4. In a constellation far, far away!

image

The farthest known GRB occurred 12.2 billion light-years away in the constellation Carina. Called 080916C, researchers calculate the explosion contained the power of 9,000 supernovae.

5. Probing the physics of our cosmos!

image

The known distance to 090510 helped test Einstein’s theory that the fabric of space-time is smooth and continuous. Fermi detected both a high-energy and a low-energy gamma ray at nearly the same instant. Having traveled the same distance in the same amount of time, they showed that all light, no matter its energy, moves at the same speed through the vacuum of space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
2 years ago

Follow NASA’s Artemis I Moon Mission: Live Tracker, Latest Images, and Videos

On Nov. 16, 2022, the Artemis I mission officially began with the launch of the Orion spacecraft atop the Space Launch System rocket. The rocket and spacecraft lifted off from historic Launch Complex 39B at NASA’s Kennedy Space Center in Florida.

Now, the Orion spacecraft is about halfway through its journey around the Moon. Although the spacecraft is uncrewed, the Artemis I mission prepares us for future missions with astronauts, starting with Artemis II.

Stay up-to-date with the mission with the latest full-resolution images, mission updates, on-demand and live video.

A cross-section of the white, cylindrical Orion spacecraft dominates the left side of the screen. A rectangular solar array snaked with multicolored wires extends up and out to 2 o'clock, and four bell-shaped auxiliary thrusters point down from the body of the spacecraft. The small crescent Moon is isolated in the black of space in the distance beyond and below the solar array. Credit: NASA

Imagery:

Find full-resolution images from the Orion spacecraft as they are released here.

Launch imagery can be found here. When Orion splashes down in the Pacific Ocean on Dec. 11, the images will be available here, as well!

Videos:

This playlist contains informational videos, as well as upcoming and past live events, about Artemis I.

You can watch a livestream of the Artemis I mission here. (Just a note: the livestream may cut off during moments when the Orion team needs higher bandwidth for activities.)

Keep yourself updated on the upcoming broadcasts of Artemis milestones with the NASA TV schedule.

An animation shows the Orion spacecraft flying in space with the Moon in the far distance in the left side of the image. The text on the image reads:
Mission Time: 9 days, 7 hrs, 56 min
Orion is 233,784 miles from Earth, 57,639 miles from the Moon, cruising at 2,420 miles per hour.
P: (40690, -207007, -109608)
V: (2411, -52, -200)
O: 285º, 143.7º, 134.4º

Trackers:

Our Artemis I Tracker uses live telemetry data streamed directly from Mission Control Center in Houston to show Orion position, attitude, solar array positions, and thruster firings throughout the mission.

“Eyes on the Solar System” shows Orion's position along the Artemis I trajectory and in relation to other NASA spacecraft and objects in the solar system.

“DSN Now” shows which antenna on Earth’s Deep Space Network is communicating with Orion.

Updates:

Read up on where Orion is and what’s next in the Artemis I mission with the Mission Blog.

Thank you so much for following with us on this historic mission. Go Artemis!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Testing Time for the SLS Engine Section

In schools across the country, many students just finished final exams. Now, part of the world’s most powerful rocket, the Space Launch System (SLS), is about to feel the pressure of testing time. The first SLS engine section has been moving slowly upriver from Michoud Assembly Facility near New Orleans, but once the barge Pegasus docks at our Marshall Space Flight Center in Huntsville, Alabama, the real strength test for the engine section will get started.

image

The engine section is the first of four of the major parts of the core stage that are being tested to make sure SLS is ready for the challenges of spaceflight.

image

The engine section is located at the bottom of the rocket. It has a couple of important jobs. It holds the four RS-25 liquid propellant engines, and it serves as one of two attach points for each of the twin solid propellant boosters. This first engine section will be used only for ground testing. 

image

Of all the major parts of the rocket, the engine section gets perhaps the roughest workout during launch. Millions of pounds of core stage are pushing down, while the engines are pushing up with millions of pounds of thrust, and the boosters are tugging at it from both sides. That’s a lot of stress. Maybe that’s why there’s a saying in the rocket business: “Test like you fly, and fly like you test.”

image

After it was welded at Michoud, technicians installed the thrust structure, engine supports and other internal equipment and loaded it aboard the Pegasus for shipment to Marshall.

image

Once used to transport space shuttle external tanks, Pegasus was modified for the longer SLS core stage by removing 115 feet out of the middle of the barge and added a new 165-foot section with a reinforced main deck. Now as long as a football field, Pegasus – with the help of two tugboats – will transport core stage test articles to Marshall Space Flight Center as well as completed core stages to Stennis Space Center in Mississippi for test firing and then to Kennedy Space Center for launch.

Testing Time For The SLS Engine Section

The test article has no engines, cabling, or computers, but it will replicate all the structures that will undergo the extreme physical forces of launch. The test article is more than 30 feet tall, and weighs about 70,000 pounds. About 3,200 sensors attached to the test article will measure the stress during 59 separate tests. Flight-like physical forces will be applied through simulators and adaptors standing in for the liquid hydrogen tank and RS-25 engines.

image

The test fixture that will surround and secure the engine section weighs about 1.5 million pounds and is taller than a 5-story building. Fifty-five big pistons called “load lines” will impart more than 4.5 million pounds of force vertically and more than 428,000 pounds from the side.

image

The engineers and their computer design tools say the engine section can handle the stress.  It’s the test team’s job prove that it can.

For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/


Tags
5 years ago

10 Ways the 2010s Pushed Communication and Navigation into the Future!

We transmit vast amounts of data from space, letting all of our satellites “phone home.” Imagery from far off regions of our solar system, beautiful visions of other galaxies and insights into planet Earth flow through our communications networks. 

Our Space Communications and Navigation (SCaN) program is dedicated to making sure we precisely track, command and control our spacecraft. All the while, they develop bold new technologies and capabilities for Artemis – our sustainable lunar exploration program that will place the first woman and the next man on the Moon in 2024. 

As we prepare to say goodbye to the 2010s, let’s take a look at 10 of the biggest milestones in space communications and navigation of the past decade. 

1. Continuous global communications? TDRS has you covered.

image

From 2013 to 2017, we launched three Tracking and Data Relay Satellites, or TDRS for short. These new satellites replenished a fleet that has been around since the early 1980s, allowing us to provide continuous global communications coverage into the next decade. Missions like the International Space Station depend on TDRS for 24/7 coverage, allowing our astronauts to call home day or night.

2. Binge watching on the Moon? Laser communications will make it possible.

image

Imagine living at the Moon. With the Artemis program, we’re making it happen! However, we can’t live there without decent internet, right? In 2013, we conducted the Lunar Laser Communication Demonstration (LLCD). This was the first high-speed laser communications demonstration from the Moon, transmitting data at a whopping 622 megabits per second, which is comparable to many high-speed fiber-optic connections enjoyed at home on Earth! Our LLCD sent back high-definition video with no buffering. 

3. Record Breaking GPS navigation, at your service.

Space communications is just one piece of the SCaN puzzle. We do navigation too! We even break records for it. In 2016, our Magnetospheric Multiscale (MMS) mission broke the world record for highest altitude GPS fix at 43,500 miles above Earth. In 2017, they broke it again at 93,200 miles. Earlier this year, they broke it a third time at 116,200 miles from Earth — about halfway to the Moon!

Thanks to MMS, our navigation engineers believe that GPS and similar navigation constellations could play a significant role in the navigation architecture of our planned Gateway spaceship in lunar orbit!

4. Crashing planes as part of the game – of research!  

image

Then there was that one summer we crashed three planes in the name of research! In 2015, our Search and Rescue office tested crash scenarios at Langley Research Center’s Landing and Impact Research Facility to improve the reliability of emergency beacons installed in planes. After the study, we made recommendations on how pilots should install these life-saving beacons, increasing their chances of survival in the event of a crash. The Federal Aviation Administration adopted these recommendations this year!

5. The Deep Space Atomic Clock takes flight. 

image

Missions venturing into deep space want the autonomy to make decisions without waiting for a commands from Earth. That’s why we launched the Deep Space Atomic Clock this past year. This itty-bitty technology demonstration is a small, ultra-stable timekeeping device that could enable autonomous navigation!

6. 50 never looked so good – for our Deep Space Network. 

image

In 2013, our Deep Space Network celebrated its 50th birthday! This is the network that transmitted Neil Armstrong’s famous words, "That's one small step for (a) man, one giant leap for mankind." Some of its more recent accomplishments? Gathering the last bits of data before Cassini dove into Saturn’s upper atmosphere, pulling down the “heart” of Pluto and talking to the Voyager probes as they journeyed into interstellar space!

7. SCaN Testbed becomes an official Hall of Famer. 

image

In 2012, we installed the SCaN Testbed, which looks like a blue box in the above picture, on the space station! We built the testbed out of Software Defined Radios, which can change their functionality and employ artificial intelligence. These radios will help us adapt to the increasingly crowded communications landscape and improve the efficiency of radio technology. The Testbed was so ground-breaking that it was inducted into the Space Technology Hall of Fame in 2019.

8. Moon mission communications system, secured! 

image

Just a few weeks ago, we held a ribbon-cutting for the Near Earth Network’s Launch Communications Segment, which will support Artemis missions as they rocket toward the Moon! During initial, dynamic phases of launch, the segment’s three stations will provide communications between astronauts and mission controllers, giving them the data necessary to ensure crew safety. 

9. Deep Space Station antenna introduces “beam waveguide” technology. 

image

On October 1, 2014, in Canberra, Australia, the Deep Space Network’s Deep Space Station 35 (DSS-35) antenna went operational. It was the first of a number of new antennas built to support the growing number of deep space missions! The antenna is different from other antennas that were built before it. Older antennas had a lot of their equipment stored high up on the antenna above the dish. DSS-35 uses “beam waveguide” technology that stores that equipment underground. This makes the weight sitting on the dish much lighter, cuts down on interference and makes the antenna much easier to operate and maintain.

10. Hello, Alaska! 

image

Last — but certainly not least — we expanded our presence in the 49th state, Alaska! While this picture might look like antennas rising from the forests of  Endor, the one in the foreground is actually an antenna we installed in 2014 in partnership with the University of Alaska Fairbanks. Because of its proximity to the polar north, this 11-meter beauty is uniquely situated to pull down valuable Earth science data from our polar-orbiting spacecraft, contributing to scientists’ understanding of our changing planet!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

in a male dominated profession, what were some obstacles you faced as the first Hispanic female flight director and how did you overcome them? what would be your advice to young women interested in the space program?


Tags
1 year ago

5 Myths About Becoming an Astronaut

Editor’s Note: This post was updated on March 15, 2024, to reflect new URLs and updated qualifications for applicants.

Have you ever wondered if you have what it takes to become a NASA astronaut? The term “astronaut” derives from the Greek word meaning “star sailor.”

We’re looking for a new class of astronauts to join the NASA team, and if you’re thinking about applying, there are a few things you should know.

Here are a few myths about becoming an astronaut:

MYTH: All astronauts have piloting experience.

FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but it could be beneficial to have.

image

MYTH: All astronauts have perfect vision.

FACT: It’s OK if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least one year has passed since the date of the procedure with no permanent adverse aftereffects.

image

MYTH: All astronauts have advanced degrees, like a PhD.

FACT: While a master’s degree from an accredited university is typically necessary to become an astronaut, an exception exists if you have completed a medical degree or test pilot school.

image

MYTH: Astronauts are required to have military experience to be selected.

FACT: Military experience is not required to become an astronaut.

image

MYTH: You must be a certain age to be an astronaut. 

FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.

image

OK, but what are the requirements?

image

Basic Qualification Requirements

Applicants must meet the following minimum requirements before submitting an application:

Be a U.S. citizen.

Have completed a master’s degree (or foreign equivalent) in an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

The master’s degree requirement can also be met by having:

Completed at least two years (36 semester hours or 54 quarter hours) in an accredited PhD or related doctoral degree program (or foreign equivalent) with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Completed a Doctor of Medicine, Doctor of Osteopathic Medicine, or related medical degree (or foreign equivalent) in an accredited college or university.

Completed or be currently enrolled in a Test Pilot School (TPS) program (nationally or internationally recognized) and will have completed this program by June 2025. (Must submit proof of completion or enrollment.)

If TPS is your only advanced technical degree, you must have also completed a bachelor’s degree or higher (or foreign equivalent) at an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Have at least three years of related professional experience obtained after degree completion (or 1,000 Pilot-in-Command hours with at least 850 of those hours in high-performance jet aircraft for pilots). For medical doctors, time in residency can count toward experience and must be completed by June 2025.

Be able to pass the NASA long-duration flight astronaut physical.

Applications for our next astronaut class are open through April 2! Learn more about our Astronaut Selection Program and check out current NASA astronaut Anne McClain’s advice in “An Astronaut’s Guide to Applying to Be an Astronaut.”

Make sure to follow us on Tumblr for your regular dose of space!

Keep reading

4 years ago

Who Was Mary W. Jackson?

image

On June 24, 2020, NASA announced the agency’s headquarters building in Washington, D.C., was to be named after Mary W. Jackson, the first African American female engineer at NASA.

Jackson’s story — along with those of her colleagues Katherine Johnson, Dorothy Vaughan, and Christine Darden — was popularized with the release of the “Hidden Figures” movie, based on Margot Lee Shetterly’s book by the same name.

Today, as the accomplishments of these women are brought to light, we celebrate them as Modern Figures — hidden no longer. Despite their recent recognition, we cannot forget the challenges that women and BIPOC faced and continue to face in the STEM fields.

image

Background

Jackson showed talent for math and science at an early age. She was born in 1921 in Hampton, Virginia, and attended the all-Black George P. Phenix Training School where she graduated with honors. She graduated from Hampton Institute (now Hampton University) in 1942 with a bachelor of science degree in both mathematics and physical sciences.

Jackson worked several jobs before arriving at the National Advisory Committee on Aeronautics (NACA), the precursor organization to NASA. She was a teacher, a receptionist, and a bookkeeper — in addition to becoming a mother — before accepting a position with the NACA Langley Aeronautical Laboratory’s segregated West Area Computers in 1951, where her supervisor was Dorothy Vaughan.

image

Accomplishments 

After two years in West Computing, Jackson was offered a computing position to work in the 4-foot by 4-foot Supersonic Pressure Tunnel. She was also encouraged to enter a training program that would put her on track to become an engineer — however, she needed special permission from the City of Hampton to take classes in math and physics at then-segregated Hampton High School.

She completed the courses, earned the promotion, and in 1958 became NASA’s first African-American female engineer. That same year, she co-authored her first report, “Effects of Nose Angle and Mach Number on Transition on Cones at Supersonic Speeds.” By 1975, she had authored or co-authored 12 NACA and NASA technical publications — most focused on the behavior of the boundary layer of air around an airplane.

image

Legacy

Jackson eventually became frustrated with the lack of management opportunities for women in her field. In 1979, she left engineering to become NASA Langley’s Federal Women’s Program Manager to increase the hiring and promotion of NASA’s female mathematicians, engineers, and scientists.

Not only was she devoted to her career, Jackson was also committed to the advancement of her community. In the 1970s, she helped the students in the Hampton King Street Community Center build their own wind tunnel and run experiments. She and her husband Levi took in young professionals in need of guidance. She was also a Girl Scout troop leader for more than three decades.  

Jackson retired from Langley in 1985. Never accepting the status quo, she dedicated her life to breaking barriers for minorities in her field. Her legacy reminds us that inclusion and diversity are needed to live up to NASA’s core values of teamwork and excellence.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

What’s Up for January?

image

A meteor shower, a binocular comet and the winter circle of stars. Here are the details:

Quadrantid Meteor Shower

image

The Quadrantid meteor shower on Jan. 4 will either sizzle or fizzle for observers in the U.S. The shower may favor the U.S. or it could favor Europe depending on which prediction turns out to be correct. For viewing in the United States, observers should start at 3 a.m. EST. The peak should last about two hours with rates of 120 meteors per hour predicted in areas with a dark sky.

Comet Catalina

image

In the middle of the month, midnight to predawn will be primetime for viewing Comet Catalina. It should be visible with binoculars if you have a dark sky, but a telescope would be ideal. Between the 14th and 17th the comet will pass by two stunning galaxies: M51, the whirlpool galaxy and M101, a fainter spiral galaxy.

Constellation Orion

image

Winter is also the best time to view the constellation Orion in the southeastern sky. Even in the city, you’ll see that it’s stars have different colors. Not telescope needed, just look up a few hours after sunset! The colorful stars of Orion are part of the winter circle of stars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
  • fistgatergeto
    fistgatergeto liked this · 1 year ago
  • theproxyfront
    theproxyfront reblogged this · 4 years ago
  • melordamas
    melordamas liked this · 5 years ago
  • ghostonthestars
    ghostonthestars reblogged this · 5 years ago
  • ghostonthestars
    ghostonthestars liked this · 5 years ago
  • woozimakesmewoozy
    woozimakesmewoozy liked this · 5 years ago
  • jackerblitz
    jackerblitz reblogged this · 6 years ago
  • jackerblitz
    jackerblitz liked this · 6 years ago
  • cyandrawsstuff
    cyandrawsstuff liked this · 6 years ago
  • sweetdespacito
    sweetdespacito liked this · 6 years ago
  • valkaryss
    valkaryss reblogged this · 6 years ago
  • blushseraph
    blushseraph liked this · 6 years ago
  • goodiebluebox
    goodiebluebox liked this · 6 years ago
  • miniyelia
    miniyelia reblogged this · 6 years ago
  • miniyelia
    miniyelia liked this · 6 years ago
  • schooled-schooling-blog
    schooled-schooling-blog reblogged this · 7 years ago
  • lebeutzen
    lebeutzen reblogged this · 7 years ago
  • midnightcactus
    midnightcactus reblogged this · 7 years ago
  • midnightcactus
    midnightcactus liked this · 7 years ago
  • primarycorsage
    primarycorsage liked this · 7 years ago
  • nolifekat
    nolifekat liked this · 7 years ago
  • liptonrm
    liptonrm reblogged this · 7 years ago
  • lili-fifi-blog
    lili-fifi-blog liked this · 7 years ago
  • bunnyomo
    bunnyomo liked this · 7 years ago
  • hrdwrknblkman
    hrdwrknblkman liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags