Combined As One! Further Than Before: Pathway To The Stars, Parts 1 & 2 In An 8.3 X 11.7 Inch Novel Of

Combined As One! Further Than Before: Pathway To The Stars, Parts 1 & 2 In An 8.3 X 11.7 Inch Novel Of

Combined as one! Further than Before: Pathway to the Stars, Parts 1 & 2 in an 8.3 x 11.7 inch novel of 400K words that hit the intellect in the best and most sophisticated ways,... through #scifi #fantasy #mustread #physics #theoreticalphysics #spaceopera #strongfemalelead #strongmalerolemodel #physiology #neuroscience #nanotechnology #longevity #CRISPR and more! Enjoy! https://www.instagram.com/p/BsP4HEpn5eV/?utm_source=ig_tumblr_share&igshid=dntpo9632yjz

More Posts from Matthewjopdyke and Others

6 years ago
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?
What Is The Atacama Large Millimeter/submillimeter Array (ALMA)?

What is the Atacama Large Millimeter/submillimeter Array (ALMA)?

High on the Chajnantor plateau in the Chilean Andes, the European Southern Observatory (ESO), together with its international partners, is operating the Atacama Large Millimeter/submillimeter Array (ALMA) — a state-of-the-art telescope to study light from some of the coldest objects in the Universe. This light has wavelengths of around a millimetre, between infrared light and radio waves, and is therefore known as millimetre and submillimetre radiation. ALMA comprises 66 high-precision antennas, spread over distances of up to 16 kilometres. This global collaboration is the largest ground-based astronomical project in existence.

The antennas can be moved across the desert plateau over distances from 150 m to 16 km, which will give ALMA a powerful variable “zoom”, similar in its concept to that employed at the Very Large Array (VLA) site in New Mexico, United States.

What is submillimetre astronomy?

Light at these wavelengths comes from vast cold clouds in interstellar space, at temperatures only a few tens of degrees above absolute zero, and from some of the earliest and most distant galaxies in the Universe. Astronomers can use it to study the chemical and physical conditions in molecular clouds — the dense regions of gas and dust where new stars are being born. Often these regions of the Universe are dark and obscured in visible light, but they shine brightly in the millimetre and submillimetre part of the spectrum.

Why build ALMA in the high Andes?

Millimetre and submillimetre radiation opens a window into the enigmatic cold Universe, but the signals from space are heavily absorbed by water vapour in the Earth’s atmosphere. Telescopes for this kind of astronomy must be built on high, dry sites, such as the 5000-m high plateau at Chajnantor, one of the highest astronomical observatory sites on Earth.

The ALMA site, some 50 km east of San Pedro de Atacama in northern Chile, is in one of the driest places on Earth. Astronomers find unsurpassed conditions for observing, but they must operate a frontier observatory under very difficult conditions. Chajnantor is more than 750 m higher than the observatories on Mauna Kea, and 2400 m higher than the VLT on Cerro Paranal.

Source: eso.org

7 years ago
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned
The 4 Scientific Lessons Stephen Hawking Never Learned

The 4 Scientific Lessons Stephen Hawking Never Learned

“His work, his life, and his scientific contributions made him an inspiration to millions across the world, including to me. But the combination of his achievements and his affliction with ALS — combined with his meteoric fame — often made him immune to justified criticism. As a result, he spent decades making false, outdated, or misleading claims to the general population that permanently harmed the public understanding of science. He claimed to have solutions to problems that fell apart on a cursory glance; he proclaimed doomsday for humanity repeatedly with no evidence to back such claims up; he ignored the good work done by others in his own field. Despite his incredible successes in a number of arenas, there are some major scientific lessons he never learned. Here’s your chance to learn them now.”

Hawking’s contribution to physics, from the existence and meaning of singularities to properties of a black hole’s event horizon, entropy, temperature, and the radiation they generate were remarkable in the 1960s and 1970s. His popularizations of science were groundbreaking, too, exposing a general audience to a wide variety of wild and speculative ideas, igniting an interest in theoretical astrophysics in the minds of millions around the world. But as brilliant as Hawking was, there were a number of lessons about science and humanity that he never learned for himself, from the Big Bang and black holes to lessons about communicating speculative or unproven information as though they were facts. We have a tendency, when we turn people into heroes, to lionize their achievements and ignore their failings, but to do so cheats humanity out of recognizing all the facets of a complicated character.

Come learn, for yourself, the 4 scientific ideas that Stephen Hawking never managed to learn and incorporate while he was still alive.

5 years ago

Pathway to the Stars: Part 9, Allure & Spacecraft "We cannot engage in human progression as solo artists, alone, and expect long-term and optimal results. While we can inspire momentum for a time, while working diligently, ultimately the laws of chaos will prevail unless we work together to preserve our world, our solar system, and our Universe." ~ Eliza Williams Vesha has completed her Virtual Universe training, and now she becomes immersed in missions and callings as never before! Enjoy as she tackles issues where society seems muddled in the chains of self-bondage, rather than moving forward with a bright and beautiful future for all. Joanne revisits a problem that can affect Eliza Williams' hopes for the future. Among Eliza's many goals within the Solar System to that end, related to space travel, is the construction of spacecraft being built just above Pluto! Enjoy this Space Opera as Eliza continues her quest to nurture humanity into a space-faring, world-preserving, and Universe-exploring civilization! She believes that the most significant step toward moving forward is kindness, and that kindness is the greatest strength we have! ISBN: 978-1951321093 LCCN: 2019918425eBook: https://smile.amazon.com/dp/B081XLG9JV Paperback: https://smile.amazon.com/dp/195132109X For more info: https://www.mjopublications.com https://smile.amazon.com/author/matthewopdyke Tags: #sciencefiction #scifi #spaceopera #fantasy #stem #astronomy #sentience #spacecraft #spaceelevator #wellbeing #author #matthewjopdyke #ebook #paperback #amazon

6 years ago

New Release! Pathway to the Stars: Part 4, Universal Party

New Release! Pathway to the Stars: Part 4, Universal Party

I am pleased to announce a NEW RELEASE to my Space Opera series. It is now available on Amazon in ebook and paperback formats! 

Pathway to the Stars: Part 4, Universal Party

Autographed copies of printed material are available for direct purchase on the author website at:

https://www.ftb-pathway-publications.com

Thank you, Kim, for putting this together!

[youtube=https://www.youtube.co…

View On WordPress


Tags
7 years ago
You’re Looking At A Real Big Deal.

You’re looking at a real big deal.

Because in a nanotechnology lab, big deals come in smaller and smaller packages. What you see above is an extreme close-up of a 5 nanometer transistor. In an industry-first, the IBM Research Alliance developed nanosheet transistors that will enable a 5 nm chip. What’s so big about that? Well, by achieving a scale of 30 billion switches on a fingernail sized chip, it can deliver significant enhancements over today’s state-of-the-art 10 nm chips. This not only improves the performance of current technologies but also provides the fuel for the future demands of AI, VR, quantum and mobile technologies to run on. Plus, it could also make things like smartphone batteries last 2-3x longer between charges, so it may also be a real lifesaver too. 

Learn more about it->

6 years ago
I Hope The New Year Puts The Light Into Our Eyes, Allows The Embers Of The Fire To Glow Within Our Spirits,

I hope the new year puts the light into our eyes, allows the embers of the fire to glow within our spirits, and brings clarity to our minds, willing and making good things happen that bring joy to our lives and the lives of others we meet along the way.

- Matt Opdyke

#scifiauthor

7 years ago
💜 - Matthew Opdyke

💜 - Matthew Opdyke

6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago
#matthewopdyke #scifiauthor #politicalsciencefiction #longevity #neuroscience #physics #theoreticalphysics

#matthewopdyke #scifiauthor #politicalsciencefiction #longevity #neuroscience #physics #theoreticalphysics #biotechnology #nanotechnology #physiology #solarsystem #pathwaytothestars #advancedcivilization https://www.instagram.com/p/BtA69fdgfy1/?utm_source=ig_tumblr_share&igshid=1jswi9krjwmqe


Tags
6 years ago

Proud to Announce...

Proud to Announce…

Proud To Announce...

Here is a portion of an email I received today. After three years of research, breathing life into new characters, and helping the world enjoy their journey, I found I had to divide my novel into two parts. So, there will be a Part 1 and a Part 2. Without further ado:

“Congratulations! Your book “Further Than Before: Pathway to the Stars” is available for pre-order in the Kindle Store. It is…

View On WordPress

Loading...
End of content
No more pages to load
  • matthewjopdyke
    matthewjopdyke reblogged this · 6 years ago
matthewjopdyke - Matthew J. Opdyke
Matthew J. Opdyke

Author Matthew J. Opdyke, Science Fiction and Fantasy

147 posts

Explore Tumblr Blog
Search Through Tumblr Tags