Ode to Apollo 11 and the joy of discovery
NASA Astronomy Picture of the Day 2016 January 27
Why would the sky look like a giant fan? Airglow. The featured intermittent green glow appeared to rise from a lake through the arch of our Milky Way Galaxy, as captured last summer next to Bryce Canyon in Utah, USA. The unusual pattern was created by atmospheric gravity waves, ripples of alternating air pressure that can grow with height as the air thins, in this case about 90 kilometers up. Unlike auroras powered by collisions with energetic charged particles and seen at high latitudes, airglow is due to chemiluminescence, the production of light in a chemical reaction. More typically seen near the horizon, airglow keeps the night sky from ever being completely dark.
What do we have planned for 2016? A return to the king of planets. A survey of mysterious Ceres. More postcards from Pluto. Anyone who follows solar system exploration in 2016 is in for quite a ride. Last year was one for the record books – and now here are 10 things to look forward to in the new year. See also: what we have planned agency wide for 2016.
Juno Arrives at Jupiter
July 4, 2016 is arrival day for the Juno mission, the first sent expressly to study the largest planet in the solar system since our Galileo mission in the 1990s. Humans have been studying Jupiter for hundreds of years, yet many basic questions about the gas world remain: How did it form? What is its internal structure? Exactly how does it generate its vast magnetic field? What can it tell us about the formation of other planets inside and outside our solar system? Beginning in July, we’ll be a little closer to the answers.
OSIRIS-REx Takes Flight
The OSIRIS-REx mission, short for Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer, sets sail for an asteroid in September. The spacecraft will use a robotic arm to pluck samples from the asteroid Bennu to help better explain our solar system’s formation and even find clues to how life began.
Dawn Sees Ceres Up Close
After an odyssey of many years and millions of miles, in December the Dawn spacecraft entered its final, lowest mapping orbit around the dwarf planet Ceres. The intriguing world’s odd mountains, craters and salty deposits are ready for their close-ups. We can expect new images of the starkly beautiful surface for months.
Cassini Commences Its Grand Finale
In late 2016, the Cassini spacecraft will begin a daring set of orbits called the Grand Finale, which will be in some ways like a whole new mission. Beginning this year and extending into next, the spacecraft will repeatedly climb high above Saturn’s poles, flying just outside its narrow F ring 20 times. After a last targeted Titan flyby, the spacecraft will then dive between Saturn’s uppermost atmosphere and its innermost ring 22 times. As Cassini plunges past Saturn, the spacecraft will collect rich and valuable information far beyond the mission’s original plan.
New Horizons Sends More Postcards from Pluto
We have stared slack-jawed at the images and discoveries from last year’s Pluto flyby, but the fact is that most of the data that New Horizons collected remains on board the spacecraft. In 2016, we’ll see a steady release of new pictures — and very likely some expanded answers to longstanding questions.
Mars Missions March Forward
With five of our missions continuing their Martian quests, 2016 should be a good year for discoveries on the Red Planet.
Mars Odyssey
Mars Opportunity
Mars Reconnaissance Orbiter
Mars Curiosity
MAVEN
Mercury Transits the Sun
A transit is a very rare astronomical event in which a planet passes across the face of the sun. In May, Mercury will transit the sun, on of only thirteen Mercury transits each century on average.
LRO Keeps an Eagle Eye On the Moon
The Lunar Reconnaissance Orbiter (LRO) will extend its run in 2016, scanning the moon’s surface with its sharp-eyed instruments, investigating everything from lava tube skylights to changes at the Apollo landing sites.
Spacecraft Fly Under Many Flags
Our partner agencies around the world will be flying several new or continuing planetary missions to destinations across the solar system:
Akatsuki at Venus
ExoMars
Mars Express
Mars Orbiter Mission
Rosetta at Comet 67/P
Technology Demonstration Missions Push the Envelope
We’re always looking for new frontiers on distant worlds, as well as the technology that will take us there. This year, several missions are planned to take new ideas for a spin in space:
Deep Space Atomic Clock
NODES
LDSD
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Highest point in Georgia
Einstein presented his theory of relativity in 1916, but for an entire century nobody could find physical proof of black holes. In 2016, scientists finally detected gravitational waves that emitted from 2 black holes colliding, proving that such things not only exist, but that Einstein was right all along. Source
In this Chandra image of NGC6388, researchers have found evidence that a white dwarf star may have ripped apart a planet as it came too close. When a star reaches its white dwarf stage, nearly all of the material from the star is packed inside a radius one hundredth that of the original star.
Nasa spots mysterious heart-shaped craters on the surface of Mars. Mars wishes you love ❤
Images of Hubble Ultra Deep Field (the farthest we’ve ever seen into the universe) and it’s close-ups. Astronomers, in 1996, attempted something extraordinary. They pointed the Hubble Space Telescope into a part of the sky that seemed utterly empty, a patch devoid of any planets, stars and galaxies. This area was close to the Big Dipper, a very familiar constellation. The patch of sky was no bigger than a grain of sand held out at arms length. There was a real risk that the images returned would be as black as the space at which it was being pointed. Nevertheless, they opened the telescope and slowly, over the course of 10 full days, photons that had been travelling for over 13 billion years finally ended their journey on the detector of humanity’s most powerful telescope. When the telescope was finally closed, the light from over 3,000 galaxies had covered the detector, producing one of the most profound and humbling images in all of human history - every single spot, smear, and dot was an entire galaxy, each one containing hundreds of billions of stars.
Later, in 2004, they did it again, this time pointing the telescope toward an area near the constellation Orion. They opened the shutter for over 11 days and 400 complete orbits around the Earth. Detectors with increased sensitivity and filters that allowed more light through than ever before allowed over 10,000 galaxies to appear in what became known as the Ultra Deep Field, an image that represented the farthest we’ve ever seen into the universe.The photons from these galaxies left when the universe was only 500 million years old, and 13 billion years later, they end their long journey as a small blip on a telescope’s CCD.
There are over 100 billion galaxies in the universe. Simply saying that number doesn’t really mean much to us because it doesn’t provide any context. Our brains have no way to accurately put that in any meaningful perspective. When we look at this image, however, and think about the context of how it was made, and really understand what it means, we instantly gain the perspective and cannot help but be forever changed by it. We pointed the most powerful telescope ever built by human beings at absolutely nothing, for no other reason than because we were curious, and discovered that we occupy a very tiny place in the heavens.
The spacecraft Cassini captured some raw images of the icy Saturn moon, Enceladus from just 30 miles away. The small crescent moon erupted a geyser at its South Pole, backlit plumes filled with salt water and organic compounds. Read full article and view these pictures here.
"Astronomy compels the soul to look upwards and leads us from this world to another." - Plato
147 posts