Salar De Uyuni, Bolivia🇧🇴

Salar de Uyuni, Bolivia🇧🇴

Crédito: 不動明王

Salar De Uyuni, Bolivia🇧🇴

More Posts from Glaretum and Others

4 years ago
This Is The Eta Carinae Nebula! ♥✨🔥

This is the Eta Carinae Nebula! ♥✨🔥

The Eta Carinae nebula is one of the largest diffuse nebulae in our night sky, being almost 4 times larger than the Orion Nebula. The picture above only is a small part of the Eta Carinae Nebula - this section is called the Keyhole Nebula and it has a lot of dark gas and its shape has changed drastically due to nearby ionizing radiation! 🔑✨🔑✨🔑✨

Taken by me (Michelle Park) using the Slooh Chile One telescope on December 7th, 2020 at 7:23 UTC.

3 years ago

La galaxia del molinete ubicada en la constelación de la osa mayor ubicada a 25 millones de años luz. Para más información de la fotografía, visiten el perfil del autor.

Crédito: Daniel Velázquez.

https://instagram.com/dnvlgm

~Antares

La Galaxia Del Molinete Ubicada En La Constelación De La Osa Mayor Ubicada A 25 Millones De Años Luz.
3 years ago

Luna llena desde la República Popular China.

Crédito: Jeff Dai

https://instagram.com/jeffdaiphoto

~Antares

Luna Llena Desde La República Popular China.

Tags
3 years ago

Vía Láctea y estrella fugaz desde Tenerife, España.

Crédito: Stefan Liebermann

https://instagram.com/stefanliebermannphoto

~Antares

Vía Láctea Y Estrella Fugaz Desde Tenerife, España.

Tags
4 years ago

Estas ilustraciones muestran tres versiones de un planeta rocoso con diferentes cantidades de calentamiento interno de elementos radiactivos. El planeta del medio es parecido a la Tierra, con placas tectónicas y una dínamo interna que genera un campo magnético. El planeta superior, con más calentamiento radiogénico, tiene un vulcanismo extremo pero no tiene dinamo ni campo magnético. El planeta inferior, con menos calentamiento radiogénico, está geológicamente "muerto", sin vulcanismo.

Crédito: Melissa Weiss

Estas Ilustraciones Muestran Tres Versiones De Un Planeta Rocoso Con Diferentes Cantidades De Calentamiento

Tags
3 years ago

Stars Make Firework Supplies!

The next time you see fireworks, take a moment to celebrate the cosmic pyrotechnics that made them possible. From the oxygen and potassium that help fireworks burn to the aluminum that makes sparklers sparkle, most of the elements in the universe wouldn’t be here without stars.

From the time the universe was only a few minutes old until it was about 400 million years old, the cosmos was made of just hydrogen, helium and a teensy bit of lithium. It took some stellar activity to produce the rest of the elements!

Stars Make Firework Supplies!

Stars are element factories

Even after more than 13 billion years, the hydrogen and helium that formed soon after the big bang still make up over 90 percent of the atoms in the cosmos. Most of the other elements come from stars.

Stars Make Firework Supplies!

Stars began popping into the universe about 400 million years after the big bang. That sounds like a long time, but it’s only about 3% of the universe’s current age!

Our Nancy Grace Roman Space Telescope will study the universe’s early days to help us learn more about how we went from a hot, soupy sea of atoms to the bigger cosmic structures we see today. We know hydrogen and helium atoms gravitated together to form stars, where atoms could fuse together to make new elements, but we're not sure when it began happening. Roman will help us find out.

Stars Make Firework Supplies!

The central parts of atoms, called nuclei, are super antisocial – it takes a lot of heat and pressure to force them close together. Strong gravity in the fiery cores of the first stars provided just the right conditions for hydrogen and helium atoms to combine to form more elements and generate energy. The same process continues today in stars like our Sun and provides some special firework supplies.

Carbon makes fireworks explode, helps launch them into the sky, and is even an ingredient in the “black snakes” that seem to grow out of tiny pellets. Fireworks glow pink with help from the element lithium. Both of these elements are created by average, Sun-like stars as they cycle from normal stars to red giants to white dwarfs.

Eventually stars release their elements into the cosmos, where they can be recycled into later generations of stars and planets. Sometimes they encounter cosmic rays, which are nuclei that have been boosted to high speed by the most energetic events in the universe. When cosmic rays collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron, which can make fireworks green, and beryllium, which can make them silver or white!

Stars Make Firework Supplies!

Since massive stars have even stronger gravity in their cores, they can fuse more elements – all the way up to iron. (The process stops there because instead of producing energy, fusing iron is so hard to do that it uses up energy.)

That means the sodium that makes fireworks yellow, the aluminum that produces silver sparks (like in sparklers), and even the oxygen that helps fireworks ignite were all first made in stars, too! A lot of these more complex elements that we take for granted are actually pretty rare throughout the cosmos, adding up to less than 10 percent of the atoms in the universe combined!

Fusion in stars only got us through iron on the periodic table, so where do the rest of our elements come from? It’s what happens next in massive stars that produces some of the even more exotic elements.

Stars Make Firework Supplies!

Dying stars make elements too!

Once a star many times the Sun’s mass burns through its fuel, gravity is no longer held in check, and its core collapses under its own weight. There, atoms are crushed extremely close together – and they don’t like that! Eventually it reaches a breaking point and the star explodes as a brilliant supernova. Talk about fireworks! These exploding stars make elements like copper, which makes fireworks blue, and zinc, which creates a smoky effect.

Something similar can happen when a white dwarf star – the small, dense core left behind after a Sun-like star runs out of fuel – steals material from a neighboring star. These white dwarfs can explode as supernovae too, spewing elements like the calcium that makes fireworks orange into the cosmos.

Stars Make Firework Supplies!

When stars collide

White dwarfs aren’t the only “dead” stars that can shower their surroundings with new elements. Stars that are too massive to leave behind white dwarfs but not massive enough to create black holes end up as neutron stars.

If two of these extremely dense stellar skeletons collide, they can produce all kinds of elements, including the barium that makes fireworks bright green and the antimony that creates a glitter effect. Reading this on a phone or computer? You can thank crashing dead stars for some of the metals that make up your device, too!

Stars Make Firework Supplies!

As for most of the remaining elements we know of, we've only seen them in labs on Earth so far.

Sounds like we’ve got it all figured out, right? But there are still lots of open questions. Our Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies. That’s important because the right materials had to come together to form the air we breathe, our bodies, the planet we live on, and yes – even fireworks!

So when you’re watching fireworks, think about their cosmic origins!

Learn more about the Roman Space Telescope at: https://roman.gsfc.nasa.gov/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3 years ago

Más fotografías que se pudieron captar en nuestra aventura por el Desierto Wirikuta.

Crédito: Pavel Vorobiev

https://instagram.com/_vorobservatorio_

~Antares

Más Fotografías Que Se Pudieron Captar En Nuestra Aventura Por El Desierto Wirikuta.

Tags
4 years ago

Increíble fotografía de la conjuncion de Jupiter y Saturno que nos acaban de compartir. Este tipo de fenómeno ocurre entre 4 y 5 veces en 100 años, pero es inusual ver los planetas tan cercas como en esta ocasión. La última vez que se vieron así de cerca fue hace más de 400 años.

Crédito: @ThierryLegault

https://www.facebook.com/thierry.legault.5

Increíble Fotografía De La Conjuncion De Jupiter Y Saturno Que Nos Acaban De Compartir. Este Tipo De
Increíble Fotografía De La Conjuncion De Jupiter Y Saturno Que Nos Acaban De Compartir. Este Tipo De
Increíble Fotografía De La Conjuncion De Jupiter Y Saturno Que Nos Acaban De Compartir. Este Tipo De


Tags
4 years ago

Salar de Uyuni, Bolivia

Crédito: Jheison Huerta

Instagram: http://instagram.com/jheison_huerta

Web: http://jheisonhuerta.com

JHEISON HUERTA - photography
Sé parte de los Photo Tours 2021 junto a un gran staff de fotógrafos.

Salar De Uyuni, Bolivia

Tags
4 years ago

Vía láctea sobre el Uluru, Australia

Crédito: Stefan Liebermann

Stefan Liebermann Photography

www.stefanliebermann.de

Vía Láctea Sobre El Uluru, Australia

Tags
Loading...
End of content
No more pages to load
  • foraiques
    foraiques liked this · 1 year ago
  • glaretum
    glaretum reblogged this · 3 years ago
glaretum - Glaretum
Glaretum

Glaretum fundado en el 2015 con el objetivo de divulgar la ciencia a través de la Astronomía hasta convertirnos en una fuente de conocimiento científico veraz siendo garantía de información seria y actualizada.

248 posts

Explore Tumblr Blog
Search Through Tumblr Tags