Here Are 10_Things That Einstein Got Right.

Here are 10_Things that Einstein got right.

10 Things Einstein Got Right

One hundred years ago, on May 29, 1919, astronomers observed a total solar eclipse in an ambitious  effort to test Albert Einstein’s general theory of relativity by seeing it in action. Essentially, Einstein thought space and time were intertwined in an infinite “fabric,” like an outstretched blanket. A massive object such as the Sun bends the spacetime blanket with its gravity, such that light no longer travels in a straight line as it passes by the Sun.

This means the apparent positions of background stars seen close to the Sun in the sky – including during a solar eclipse – should seem slightly shifted in the absence of the Sun, because the Sun’s gravity bends light. But until the eclipse experiment, no one was able to test Einstein’s theory of general relativity, as no one could see stars near the Sun in the daytime otherwise.

The world celebrated the results of this eclipse experiment— a victory for Einstein, and the dawning of a new era of our understanding of the universe.

General relativity has many important consequences for what we see in the cosmos and how we make discoveries in deep space today. The same is true for Einstein’s slightly older theory, special relativity, with its widely celebrated equation E=mc². Here are 10 things that result from Einstein’s theories of relativity:

image

1. Universal Speed Limit

Einstein’s famous equation E=mc² contains “c,” the speed of light in a vacuum. Although light comes in many flavors – from the rainbow of colors humans can see to the radio waves that transmit spacecraft data – Einstein said all light must obey the speed limit of 186,000 miles (300,000 kilometers) per second. So, even if two particles of light carry very different amounts of energy, they will travel at the same speed.

This has been shown experimentally in space. In 2009, our Fermi Gamma-ray Space Telescope detected two photons at virtually the same moment, with one carrying a million times more energy than the other. They both came from a high-energy region near the collision of two neutron stars about 7 billion years ago. A neutron star is the highly dense remnant of a star that has exploded. While other theories posited that space-time itself has a “foamy” texture that might slow down more energetic particles, Fermi’s observations found in favor of Einstein.

image

2. Strong Lensing

Just like the Sun bends the light from distant stars that pass close to it, a massive object like a galaxy distorts the light from another object that is much farther away. In some cases, this phenomenon can actually help us unveil new galaxies. We say that the closer object acts like a “lens,” acting like a telescope that reveals the more distant object. Entire clusters of galaxies can be lensed and act as lenses, too.

When the lensing object appears close enough to the more distant object in the sky, we actually see multiple images of that faraway object. In 1979, scientists first observed a double image of a quasar, a very bright object at the center of a galaxy that involves a supermassive black hole feeding off a disk of inflowing gas. These apparent copies of the distant object change in brightness if the original object is changing, but not all at once, because of how space itself is bent by the foreground object’s gravity.

Sometimes, when a distant celestial object is precisely aligned with another object, we see light bent into an “Einstein ring” or arc. In this image from our Hubble Space Telescope, the sweeping arc of light represents a distant galaxy that has been lensed, forming a “smiley face” with other galaxies.

image

3. Weak Lensing

When a massive object acts as a lens for a farther object, but the objects are not specially aligned with respect to our view, only one image of the distant object is projected. This happens much more often. The closer object’s gravity makes the background object look larger and more stretched than it really is. This is called “weak lensing.”

Weak lensing is very important for studying some of the biggest mysteries of the universe: dark matter and dark energy. Dark matter is an invisible material that only interacts with regular matter through gravity, and holds together entire galaxies and groups of galaxies like a cosmic glue. Dark energy behaves like the opposite of gravity, making objects recede from each other. Three upcoming observatories – Our Wide Field Infrared Survey Telescope, WFIRST, mission, the European-led Euclid space mission with NASA participation, and the ground-based Large Synoptic Survey Telescope — will be key players in this effort. By surveying distortions of weakly lensed galaxies across the universe, scientists can characterize the effects of these persistently puzzling phenomena.

Gravitational lensing in general will also enable NASA’s James Webb Space telescope to look for some of the very first stars and galaxies of the universe.

image

4. Microlensing

So far, we’ve been talking about giant objects acting like magnifying lenses for other giant objects. But stars can also “lens” other stars, including stars that have planets around them. When light from a background star gets “lensed” by a closer star in the foreground, there is an increase in the background star’s brightness. If that foreground star also has a planet orbiting it, then telescopes can detect an extra bump in the background star’s light, caused by the orbiting planet. This technique for finding exoplanets, which are planets around stars other than our own, is called “microlensing.”

Our Spitzer Space Telescope, in collaboration with ground-based observatories, found an “iceball” planet through microlensing. While microlensing has so far found less than 100 confirmed planets,  WFIRST could find more than 1,000 new exoplanets using this technique.

image

5. Black Holes

The very existence of black holes, extremely dense objects from which no light can escape, is a prediction of general relativity. They represent the most extreme distortions of the fabric of space-time, and are especially famous for how their immense gravity affects light in weird ways that only Einstein’s theory could explain.

In 2019 the Event Horizon Telescope international collaboration, supported by the National Science Foundation and other partners, unveiled the first image of a black hole’s event horizon, the border that defines a black hole’s “point of no return” for nearby material. NASA’s Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory, and Fermi Gamma-ray Space Telescope all looked at the same black hole in a coordinated effort, and researchers are still analyzing the results.

image

6. Relativistic Jets

This Spitzer image shows the galaxy Messier 87 (M87) in infrared light, which has a supermassive black hole at its center. Around the black hole is a disk of extremely hot gas, as well as two jets of material shooting out in opposite directions. One of the jets, visible on the right of the image, is pointing almost exactly toward Earth. Its enhanced brightness is due to the emission of light from particles traveling toward the observer at near the speed of light, an effect called “relativistic beaming.” By contrast, the other jet is invisible at all wavelengths because it is traveling away from the observer near the speed of light. The details of how such jets work are still mysterious, and scientists will continue studying black holes for more clues. 

image

7. A Gravitational Vortex

Speaking of black holes, their gravity is so intense that they make infalling material “wobble” around them. Like a spoon stirring honey, where honey is the space around a black hole, the black hole’s distortion of space has a wobbling effect on material orbiting the black hole. Until recently, this was only theoretical. But in 2016, an international team of scientists using European Space Agency’s XMM-Newton and our Nuclear Spectroscopic Telescope Array (NUSTAR) announced they had observed the signature of wobbling matter for the first time. Scientists will continue studying these odd effects of black holes to further probe Einstein’s ideas firsthand.

Incidentally, this wobbling of material around a black hole is similar to how Einstein explained Mercury’s odd orbit. As the closest planet to the Sun, Mercury feels the most gravitational tug from the Sun, and so its orbit’s orientation is slowly rotating around the Sun, creating a wobble.

image

 8. Gravitational Waves

Ripples through space-time called gravitational waves were hypothesized by Einstein about 100 years ago, but not actually observed until recently. In 2016, an international collaboration of astronomers working with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors announced a landmark discovery: This enormous experiment detected the subtle signal of gravitational waves that had been traveling for 1.3 billion years after two black holes merged in a cataclysmic event. This opened a brand new door in an area of science called multi-messenger astronomy, in which both gravitational waves and light can be studied.

For example, our telescopes collaborated to measure light from two neutron stars merging after LIGO detected gravitational wave signals from the event, as announced in 2017. Given that gravitational waves from this event were detected mere 1.7 seconds before gamma rays from the merger, after both traveled 140 million light-years, scientists concluded Einstein was right about something else: gravitational waves and light waves travel at the same speed.

image

9. The Sun Delaying Radio Signals

Planetary exploration spacecraft have also shown Einstein to be right about general relativity. Because spacecraft communicate with Earth using light, in the form of radio waves, they present great opportunities to see whether the gravity of a massive object like the Sun changes light’s path.  

In 1970, our Jet Propulsion Laboratory announced that Mariner VI and VII, which completed flybys of Mars in 1969, had conducted experiments using radio signals — and also agreed with Einstein. Using NASA’s Deep Space Network (DSN), the two Mariners took several hundred radio measurements for this purpose. Researchers measured the time it took for radio signals to travel from the DSN dish in Goldstone, California, to the spacecraft and back. As Einstein would have predicted, there was a delay in the total roundtrip time because of the Sun’s gravity. For Mariner VI, the maximum delay was 204 microseconds, which, while far less than a single second, aligned almost exactly with what Einstein’s theory would anticipate.

In 1979, the Viking landers performed an even more accurate experiment along these lines. Then, in 2003 a group of scientists used NASA’s Cassini Spacecraft to repeat these kinds of radio science experiments with 50 times greater precision than Viking. It’s clear that Einstein’s theory has held up! 

image

10. Proof from Orbiting Earth

In 2004, we launched a spacecraft called Gravity Probe B specifically designed to watch Einstein’s theory play out in the orbit of Earth. The theory goes that Earth, a rotating body, should be pulling the fabric of space-time around it as it spins, in addition to distorting light with its gravity.

The spacecraft had four gyroscopes and pointed at the star IM Pegasi while orbiting Earth over the poles. In this experiment, if Einstein had been wrong, these gyroscopes would have always pointed in the same direction. But in 2011, scientists announced they had observed tiny changes in the gyroscopes’ directions as a consequence of Earth, because of its gravity, dragging space-time around it.

10 Things Einstein Got Right

BONUS: Your GPS! Speaking of time delays, the GPS (global positioning system) on your phone or in your car relies on Einstein’s theories for accuracy. In order to know where you are, you need a receiver – like your phone, a ground station and a network of satellites orbiting Earth to send and receive signals. But according to general relativity, because of Earth’s gravity curving spacetime, satellites experience time moving slightly faster than on Earth. At the same time, special relativity would say time moves slower for objects that move much faster than others.

When scientists worked out the net effect of these forces, they found that the satellites’ clocks would always be a tiny bit ahead of clocks on Earth. While the difference per day is a matter of millionths of a second, that change really adds up. If GPS didn’t have relativity built into its technology, your phone would guide you miles out of your way!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Aspergers1044 and Others

9 years ago

Nice Cars to Look at.  

LA Auto Show 2015
LA Auto Show 2015
LA Auto Show 2015
LA Auto Show 2015
LA Auto Show 2015

LA Auto Show 2015

CNET Car Tech brings you the latest news from the 2015 LA Auto Show with tons of galleries and the latest unveilings from all the major car companies.


Tags
11 years ago

Some Solar_Power Satellites of The Future might be Solar_Powered Blimps that float around in The Stratosphere.  

Solar-Powered Blimps Are The New Satellites

Solar-Powered Blimps Are the New Satellites


Tags
9 years ago

Here are The Top_Ten Star_Wars Planets!  

(via https://www.youtube.com/watch?v=SqHGZu0DBag)


Tags
7 years ago

Why do people treat autism like it’s such a bad thing? It just means the chemical makeup of your brain is different than others. It’s not that bad and you can learn to live with it. I have it, and I’m just like other people. I have feelings, thoughts, fears, ideas, friends, people I love, and many other things. I’m just a bit more awkward. It’s not that bad.


Tags
7 years ago

NASA’s TESS Mission to Search for Lots More EXOPLANETS is now about to be Launched someday really soon!

The Hunt for New Worlds Continues with TESS

We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.

image

Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.

image

TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!

image

TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.

image

What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.

image

TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).

image

Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.

image

The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!

Watch the Launch + More!

image

Sunday, April 15 11 a.m. EDT - NASA Social Mission Overview

Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.

Watch HERE. 

1 p.m. EDT - Prelaunch News Conference

Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.

Watch HERE.

3 p.m. EDT - Science News Conference

Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast. 

Watch HERE.

4 p.m. EDT - TESS Facebook Live

This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team. 

Watch HERE. 

Monday, April 16 10 a.m. EDT - NASA EDGE: TESS Facebook Live

This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.

Watch HERE.

1 p.m. EDT - Reddit AMA

Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!

Join in HERE.

6 p.m. EDT - Launch Coverage!

TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.

Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

For One Last Night, Make It a Blockbuster Night.


Tags
9 years ago
Near Earth Asteroid Itokawa. A likely candidate for future mining opportunities. Credit JAXA Look back in history and you will see that the motivation behind

I sure can’t wait until Asteroid and Lunar Mining become real_industries someday! 


Tags
11 years ago

Here's a Good Look at Alien Aerospace Engineering.  

This is part two of a Science Documentary about:  UFO Propulsion.  


Tags
7 years ago

There is a Planet out beyond Our Solar_System which has a 27,000 Year Long Orbit around it’s Host_Star.


Tags
Loading...
End of content
No more pages to load
  • klc53846
    klc53846 liked this · 2 years ago
  • wolvesinalba
    wolvesinalba liked this · 2 years ago
  • nardpunch
    nardpunch liked this · 2 years ago
  • skunkkkkkkk
    skunkkkkkkk reblogged this · 3 years ago
  • cliffsteele
    cliffsteele reblogged this · 3 years ago
  • cliffsteele
    cliffsteele liked this · 3 years ago
  • w-sih-list
    w-sih-list reblogged this · 3 years ago
  • sugar-plum-fairyy
    sugar-plum-fairyy liked this · 3 years ago
  • bl-ossom-ed
    bl-ossom-ed liked this · 3 years ago
  • the-world-and-space
    the-world-and-space reblogged this · 3 years ago
  • lazyassfandomclass
    lazyassfandomclass reblogged this · 3 years ago
  • lazyassfandomclass
    lazyassfandomclass liked this · 3 years ago
  • graspthoughts
    graspthoughts liked this · 4 years ago
  • levihansupremacy-blog
    levihansupremacy-blog liked this · 4 years ago
  • pandemoniums-blog
    pandemoniums-blog liked this · 4 years ago
  • the-path-inside
    the-path-inside liked this · 4 years ago
  • xesusrl
    xesusrl liked this · 4 years ago
  • illuminfae-ix
    illuminfae-ix reblogged this · 4 years ago
  • illuminfae-ix
    illuminfae-ix liked this · 4 years ago
  • pancakes40
    pancakes40 liked this · 4 years ago
  • illuminatedtears
    illuminatedtears reblogged this · 4 years ago
  • illuminatedtears
    illuminatedtears liked this · 4 years ago
  • witchsouth
    witchsouth reblogged this · 4 years ago
  • witchsouth
    witchsouth liked this · 4 years ago
  • astrorelations
    astrorelations reblogged this · 4 years ago
  • an-inkpot-or-a-fencepost
    an-inkpot-or-a-fencepost liked this · 4 years ago
  • blanket-blanket-blanket
    blanket-blanket-blanket reblogged this · 4 years ago
  • durinsbride
    durinsbride reblogged this · 4 years ago
  • durinsbride
    durinsbride liked this · 4 years ago
  • xycxn
    xycxn liked this · 4 years ago
  • t-dx
    t-dx liked this · 4 years ago
  • boomfm23
    boomfm23 liked this · 4 years ago
  • hauntinglywbeautiful
    hauntinglywbeautiful liked this · 4 years ago
  • rubaiatb
    rubaiatb liked this · 4 years ago
  • bibiko
    bibiko liked this · 4 years ago
  • let-the-punches-roll
    let-the-punches-roll liked this · 4 years ago
  • 1hallllle
    1hallllle reblogged this · 4 years ago
  • foulbagellightmuffin
    foulbagellightmuffin liked this · 4 years ago
  • lilretro
    lilretro reblogged this · 4 years ago
  • lightmatters
    lightmatters reblogged this · 4 years ago
  • lightmatters
    lightmatters liked this · 4 years ago
aspergers1044 - Looking Forward to The Future
Looking Forward to The Future

My First Tumblr Blog

126 posts

Explore Tumblr Blog
Search Through Tumblr Tags