It Surprises Me How Disinterested We Are Today About Things Like Physics, Space, The Universe And Philosophy

It surprises me how disinterested we are today about things like physics, space, the universe and philosophy of our existence, our purpose, our final destination. Its a crazy world out there. Be curious.

Stephen Hawking

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

More Posts from Acosmicgeek and Others

4 years ago

Neptune!

Mercury will always be my favorite planet (closest to the Sun, underappreciated, proved Einstein’s general relativity, among other things) but I think Neptune’s the most beautiful. Look at that hue!

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Neptune.
Neptune.
Neptune.
Neptune.
Neptune.
Neptune.

neptune.


Tags
4 years ago

This isn’t family friendly but its darn funny xD

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

They Haven’t Figured It Out

They haven’t figured it out


Tags
5 years ago

Galileo, what a man

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Reality Is Often Disappointing

Reality is often disappointing

4 years ago

It’s easy to forget that thousands of comets, asteroids, and meteors are near us everyday. They seem like such a rarity.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Cosmonaut Ivan Vagner Obtained This Image Of The Comet NEOWISE A Few Hours Ago From The International

Cosmonaut Ivan Vagner obtained this image of the comet NEOWISE a few hours ago from the International Space Station. He says that the dust tail looks very good from there. It is worth enlarging the image.

via reddit


Tags
4 years ago

I kinda wanna print this and put it on my wall

goddamn space is too pretty

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

AE Aurigae

AE Aurigae


Tags
4 years ago

The search for another Earth is super cool even if it might never end lol

But like, Aliens.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Are We Alone? How NASA Is Trying to Answer This Question.

One of the greatest mysteries that life on Earth holds is, “Are we alone?”

image

At NASA, we are working hard to answer this question. We’re scouring the universe, hunting down planets that could potentially support life. Thanks to ground-based and space-based telescopes, including Kepler and TESS, we’ve found more than 4,000 planets outside our solar system, which are called exoplanets. Our search for new planets is ongoing — but we’re also trying to identify which of the 4,000 already discovered could be habitable.

image

Unfortunately, we can’t see any of these planets up close. The closest exoplanet to our solar system orbits the closest star to Earth, Proxima Centauri, which is just over 4 light years away. With today’s technology, it would take a spacecraft 75,000 years to reach this planet, known as Proxima Centauri b.

How do we investigate a planet that we can’t see in detail and can’t get to? How do we figure out if it could support life?

This is where computer models come into play. First we take the information that we DO know about a far-off planet: its size, mass and distance from its star. Scientists can infer these things by watching the light from a star dip as a planet crosses in front of it, or by measuring the gravitational tugging on a star as a planet circles it.

We put these scant physical details into equations that comprise up to a million lines of computer code. The code instructs our Discover supercomputer to use our rules of nature to simulate global climate systems. Discover is made of thousands of computers packed in racks the size of vending machines that hum in a deafening chorus of data crunching. Day and night, they spit out 7 quadrillion calculations per second — and from those calculations, we paint a picture of an alien world.

image

While modeling work can’t tell us if any exoplanet is habitable or not, it can tell us whether a planet is in the range of candidates to follow up with more intensive observations. 

image

One major goal of simulating climates is to identify the most promising planets to turn to with future technology, like the James Webb Space Telescope, so that scientists can use limited and expensive telescope time most efficiently.

image

Additionally, these simulations are helping scientists create a catalog of potential chemical signatures that they might detect in the atmospheres of distant worlds. Having such a database to draw from will help them quickly determine the type of planet they’re looking at and decide whether to keep observing or turn their telescopes elsewhere.

Learn more about exoplanet exploration, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

I love that

After my Life of Stars series I’ve been wanting to do one on galaxies. Maybe I will hmmmmm

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Galaxies: Types and morphology

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. Galaxies range in size from dwarfs with just a few hundred million (108) stars to giants with one hundred trillion (1014) stars, each orbiting its galaxy’s center of mass.

image

Galaxies come in three main types: ellipticals, spirals, and irregulars. A slightly more extensive description of galaxy types based on their appearance is given by the Hubble sequence. 

image

Since the Hubble sequence is entirely based upon visual morphological type (shape), it may miss certain important characteristics of galaxies such as star formation rate in starburst galaxies and activity in the cores of active galaxies.

Ellipticals

image

The Hubble classification system rates elliptical galaxies on the basis of their ellipticity, ranging from E0, being nearly spherical, up to E7, which is highly elongated. These galaxies have an ellipsoidal profile, giving them an elliptical appearance regardless of the viewing angle. Their appearance shows little structure and they typically have relatively little interstellar matter. Consequently, these galaxies also have a low portion of open clusters and a reduced rate of new star formation. Instead they are dominated by generally older, more evolved stars that are orbiting the common center of gravity in random directions.

Spirals

image

Spiral galaxies resemble spiraling pinwheels. Though the stars and other visible material contained in such a galaxy lie mostly on a plane, the majority of mass in spiral galaxies exists in a roughly spherical halo of dark matter that extends beyond the visible component, as demonstrated by the universal rotation curve concept.

Spiral galaxies consist of a rotating disk of stars and interstellar medium, along with a central bulge of generally older stars. Extending outward from the bulge are relatively bright arms. In the Hubble classification scheme, spiral galaxies are listed as type S, followed by a letter (a, b, or c) that indicates the degree of tightness of the spiral arms and the size of the central bulge.

Barred spiral galaxy

image

A majority of spiral galaxies, including our own Milky Way galaxy, have a linear, bar-shaped band of stars that extends outward to either side of the core, then merges into the spiral arm structure. In the Hubble classification scheme, these are designated by an SB, followed by a lower-case letter (a, b or c) that indicates the form of the spiral arms (in the same manner as the categorization of normal spiral galaxies). 

Ring galaxy

image

A ring galaxy is a galaxy with a circle-like appearance. Hoag’s Object, discovered by Art Hoag in 1950, is an example of a ring galaxy. The ring contains many massive, relatively young blue stars, which are extremely bright. The central region contains relatively little luminous matter. Some astronomers believe that ring galaxies are formed when a smaller galaxy passes through the center of a larger galaxy. Because most of a galaxy consists of empty space, this “collision” rarely results in any actual collisions between stars.

Lenticular galaxy

image

A lenticular galaxy (denoted S0) is a type of galaxy intermediate between an elliptical (denoted E) and a spiral galaxy in galaxy morphological classification schemes. They contain large-scale discs but they do not have large-scale spiral arms. Lenticular galaxies are disc galaxies that have used up or lost most of their interstellar matter and therefore have very little ongoing star formation. They may, however, retain significant dust in their disks.

Irregular galaxy

image

An irregular galaxy is a galaxy that does not have a distinct regular shape, unlike a spiral or an elliptical galaxy. Irregular galaxies do not fall into any of the regular classes of the Hubble sequence, and they are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure.

Dwarf galaxy

image

Despite the prominence of large elliptical and spiral galaxies, most galaxies in the Universe are dwarf galaxies. These galaxies are relatively small when compared with other galactic formations, being about one hundredth the size of the Milky Way, containing only a few billion stars. Ultra-compact dwarf galaxies have recently been discovered that are only 100 parsecs across.

Interacting

image

Interactions between galaxies are relatively frequent, and they can play an important role in galactic evolution. Near misses between galaxies result in warping distortions due to tidal interactions, and may cause some exchange of gas and dust. Collisions occur when two galaxies pass directly through each other and have sufficient relative momentum not to merge.

Starburst

image

Stars are created within galaxies from a reserve of cold gas that forms into giant molecular clouds. Some galaxies have been observed to form stars at an exceptional rate, which is known as a starburst. If they continue to do so, then they would consume their reserve of gas in a time span less than the lifespan of the galaxy. Hence starburst activity usually lasts for only about ten million years, a relatively brief period in the history of a galaxy.

Active galaxy

A portion of the observable galaxies are classified as active galaxies if the galaxy contains an active galactic nucleus (AGN). A significant portion of the total energy output from the galaxy is emitted by the active galactic nucleus, instead of the stars, dust and interstellar medium of the galaxy.

image

The standard model for an active galactic nucleus is based upon an accretion disc that forms around a supermassive black hole (SMBH) at the core region of the galaxy. The radiation from an active galactic nucleus results from the gravitational energy of matter as it falls toward the black hole from the disc. In about 10% of these galaxies, a diametrically opposed pair of energetic jets ejects particles from the galaxy core at velocities close to the speed of light. The mechanism for producing these jets is not well understood.

image

The main known types are: Seyfert galaxies, quasars, Blazars, LINERS and Radio galaxy.

source

images: NASA/ESA, Hubble (via wikipedia)


Tags
4 years ago

They’re so lonely :(

Wait I guess that means I’m an electron since I’m #foreveralone. I feel like I should be sad about this but electrons are cool so I can’t really be lol.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Poor Electrons

Poor electrons


Tags
4 years ago

Just so you guys know, the Galilean Moons aren’t Jupiter’s only moons. It has 79 confirmed moons.

Hey, at least they’re not all lonely.

Also, fun-fact, the Moon Europa is a big candidate for a “2nd Earth,” having an ocean under a shell of ice.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Over The Span Of A Few Hours, I Collected Images Of Jupiter And Its Galilean Moons. I Labelled Each One

Over the span of a few hours, I collected images of Jupiter and its Galilean Moons. I labelled each one and you can see them move in their orbits! 🪐🪐🪐

Taken by me (Michelle Park) using the Slooh Canary Two telescope on June 3rd, 2020.


Tags
4 years ago

Lookin’ Good!

I’ve been wanting to be an Astronaut for Halloween but sadly I live in Florida and the heat might suffocate me in a full suit! Perhaps a nice NASA shirt and hat and maybe a fake ID badge and I can go as a scientist :D

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Artemis Generation Spacesuit Event : Amy Ross, A Spacesuit Engineer At Johnson Space Center, NASA Administrator

Artemis Generation Spacesuit Event : Amy Ross, a spacesuit engineer at Johnson Space Center, NASA Administrator Jim Bridenstine, watch as Kristine Davis and Dustin Gohmert wear prototype spacesuits. (via NASA)


Tags
Loading...
End of content
No more pages to load
  • ti-star
    ti-star liked this · 5 years ago
  • cheezbot
    cheezbot liked this · 5 years ago
  • acosmicgeek
    acosmicgeek reblogged this · 5 years ago
acosmicgeek - A COSMIC GEEK
A COSMIC GEEK

Get your head stuck in the stars.

101 posts

Explore Tumblr Blog
Search Through Tumblr Tags